The goal of nestedmodels is to allow the modelling of nested data. Some models only accept certain predictors. For panel data, it is often desirable to create a model for each panel. nestedmodels enhances the ‘tidymodels’ set of packages by allowing the user to classify a model as ‘nested’.
# Install the released version on CRAN
install.packages("nestedmodels")
# Or install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("ashbythorpe/nestedmodels")
library(nestedmodels)
Nested models are often best used on panel data.
data <- example_nested_data
nested_data <- tidyr::nest(example_nested_data, data = -id)
nested_data
#> # A tibble: 20 × 2
#> id data
#> <int> <list>
#> 1 1 <tibble [50 × 6]>
#> 2 2 <tibble [50 × 6]>
#> 3 3 <tibble [50 × 6]>
#> 4 4 <tibble [50 × 6]>
#> 5 5 <tibble [50 × 6]>
#> 6 6 <tibble [50 × 6]>
#> 7 7 <tibble [50 × 6]>
#> 8 8 <tibble [50 × 6]>
#> 9 9 <tibble [50 × 6]>
#> 10 10 <tibble [50 × 6]>
#> 11 11 <tibble [50 × 6]>
#> 12 12 <tibble [50 × 6]>
#> 13 13 <tibble [50 × 6]>
#> 14 14 <tibble [50 × 6]>
#> 15 15 <tibble [50 × 6]>
#> 16 16 <tibble [50 × 6]>
#> 17 17 <tibble [50 × 6]>
#> 18 18 <tibble [50 × 6]>
#> 19 19 <tibble [50 × 6]>
#> 20 20 <tibble [50 × 6]>
The nested_resamples()
function makes sure that the testing and
training data contain every unique value of ‘id’.
split <- nested_resamples(nested_data, rsample::initial_split())
data_tr <- rsample::training(split)
data_tst <- rsample::testing(split)
Fitting a nested model to this data is very simple.
model <- parsnip::linear_reg() %>%
nested()
fit <- fit(model, z ~ x + y + a + b,
tidyr::nest(data_tr, data = -id))
predict(fit, data_tst)
#> # A tibble: 260 × 1
#> .pred
#> <dbl>
#> 1 35.0
#> 2 27.7
#> 3 35.0
#> 4 39.4
#> 5 30.4
#> 6 29.5
#> 7 33.8
#> 8 33.1
#> 9 26.3
#> 10 18.9
#> # ℹ 250 more rows
If you don’t want to nest your data manually, use step_nest()
inside a
workflow:
recipe <- recipes::recipe(data_tr, z ~ x + y + a + b + id) %>%
step_nest(id)
wf <- workflows::workflow() %>%
workflows::add_model(model) %>%
workflows::add_recipe(recipe)
wf_fit <- fit(wf, data_tr)
predict(wf_fit, data_tst)
#> # A tibble: 260 × 1
#> .pred
#> <dbl>
#> 1 35.0
#> 2 27.7
#> 3 35.0
#> 4 39.4
#> 5 30.4
#> 6 29.5
#> 7 33.8
#> 8 33.1
#> 9 26.3
#> 10 18.9
#> # ℹ 250 more rows
Please note that the nestedmodels project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.