View source: R/subgroup.netmeta.R
subgroup.netmeta | R Documentation |
Subgroup analysis for objects of class netmeta
.
## S3 method for class 'netmeta'
subgroup(
x,
subgroup,
only.connected = FALSE,
common = x$common,
random = x$random,
method.tau = x$method.tau,
level.ma = x$level.ma,
backtransf = x$backtransf,
nchar.trts = x$nchar.trts,
...
)
subgroup(x, ...)
## S3 method for class 'subgroup.netmeta'
print(
x,
common = x$x$common,
random = x$x$random,
backtransf = x$x$backtransf,
nchar.trts = x$x$nchar.trts,
digits = gs("digits"),
digits.se = gs("digits.se"),
digits.Q = gs("digits.Q"),
digits.pval.Q = gs("digits.pval.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
big.mark = gs("big.mark"),
scientific.pval = gs("scientific.pval"),
zero.pval = gs("zero.pval"),
JAMA.pval = gs("JAMA.pval"),
print.se = !backtransf,
print.tau2 = gs("print.tau2"),
print.tau = gs("print.tau"),
print.Q = gs("print.Q"),
text.tau2 = gs("text.tau2"),
text.tau = gs("text.tau"),
details.methods = gs("details"),
legend = gs("legend"),
...
)
x |
An object of class |
subgroup |
A vector defining the subgroups considered in the network meta-analysis. |
only.connected |
A logical indicating whether networks of subgroups must be connected. |
common |
A logical indicating whether results for common effect subgroup network meta-analysis should be printed. |
random |
A logical indicating whether results for random effects subgroup network meta-analysis should be printed. |
method.tau |
A character string indicating which method is
used to estimate the between-study variance |
level.ma |
The level used to calculate confidence intervals for network estimates. |
backtransf |
A logical indicating whether results should be
back transformed in printouts and forest plots. If
|
nchar.trts |
A numeric defining the minimum number of
characters used to create unique treatment names
(see |
... |
Additional arguments. |
digits |
Minimal number of significant digits, see
|
digits.se |
Minimal number of significant digits for standard errors. |
digits.Q |
Minimal number of significant digits for
heterogeneity statistic Q, see |
digits.pval.Q |
Minimal number of significant digits for
p-value of heterogeneity test, see |
digits.tau2 |
Minimal number of significant digits for
between-study variance |
digits.tau |
Minimal number of significant digits for
|
big.mark |
A character used as thousands separator. |
scientific.pval |
A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345. |
zero.pval |
A logical specifying whether p-values should be printed with a leading zero. |
JAMA.pval |
A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards. |
print.se |
A logical specifying whether standard errors should be printed. |
print.tau2 |
A logical specifying whether between-study
variance |
print.tau |
A logical specifying whether |
print.Q |
A logical value indicating whether to print the results of the test of heterogeneity. |
text.tau2 |
Text printed to identify between-study variance
|
text.tau |
Text printed to identify |
details.methods |
A logical specifying whether details on statistical methods should be printed. |
legend |
A logical indicating whether a legend should be printed. |
An object of class "subgroup.netmeta"
with corresponding print
and forest
function.
forest.subgroup.netmeta
, forest.netmeta
data("Senn2013")
# Add variable with (fictitious) risk of bias values
Senn2013$rob <- NA
set.seed(1909)
for (i in unique(Senn2013$studlab))
Senn2013$rob[Senn2013$studlab == i] <- sample(1:3, 1)
Senn2013$rob <- factor(Senn2013$rob, levels = 1:3,
labels = c("low", "moderate", "high"))
# Conduct network meta-analysis
net <- netmeta(TE, seTE, treat1.long, treat2.long, studlab,
data = Senn2013, sm = "MD", reference = "plac", nchar.trts = 4)
# Conduct subgroup network meta-analysis
subgroup(net, rob, common = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.