Nothing
#' Calculate rankogram
#'
#' @description
#' This function calculates the probabilities of each treatment being
#' at each possible rank and the SUCRAs (Surface Under the Cumulative
#' RAnking curve) in frequentist network meta-analysis.
#'
#' @param x An object of class \code{\link{netmeta}}.
#' @param nsim Number of simulations.
#' @param common A logical indicating to compute ranking probabilities
#' and SUCRAs for the common effects model.
#' @param random A logical indicating to compute ranking probabilities
#' and SUCRAs for the random effects model.
#' @param small.values A character string specifying whether small
#' treatment effects indicate a beneficial (\code{"desirable"}) or
#' harmful (\code{"undesirable"}) effect, can be abbreviated.
#' @param cumulative.rankprob A logical indicating whether cumulative
#' ranking probabilites should be printed.
#' @param nchar.trts A numeric defining the minimum number of
#' characters used to create unique treatment names.
#' @param digits Minimal number of significant digits, see
#' \code{\link{print.default}}.
#' @param legend A logical indicating whether a legend should be
#' printed.
#' @param warn.deprecated A logical indicating whether warnings should
#' be printed if deprecated arguments are used.
#' @param \dots Additional arguments for printing.
#'
#' @details
#' We derive a matrix showing the probability of each treatment being
#' at each possible rank. To this aim, we use resampling from a
#' multivariate normal distribution with estimated network effects as
#' means and corresponding estimated variance covariance matrix. We
#' then summarise them using the ranking metric SUCRAs (Surface Under
#' the Cumulative RAnking curve).
#'
#' @return
#' An object of class \code{rankogram} with corresponding \code{print}
#' and \code{plot} function. The object is a list containing the
#' following components:
#' \item{ranking.matrix.common}{Numeric matrix giving the probability
#' of each treatment being at each possible rank for the common
#' effects model.}
#' \item{ranking.common}{SUCRA values for the common effects model.}
#' \item{ranking.matrix.random}{Numeric matrix giving the probability
#' of each treatment being at each possible rank for the random
#' effects model.}
#' \item{ranking.random}{SUCRA values for the random effects model.}
#' \item{cumrank.matrix.common}{Numeric matrix giving the cumulative
#' ranking probability of each treatment for the
#' common effects model.}
#' \item{cumrank.matrix.random}{Numeric matrix giving the cumulative
#' ranking probability of each treatment for the random effects
#' model.}
#' \item{nsim, common, random}{As defined above},
#' \item{small.values, x}{As defined above},
#'
#' @author Theodoros Papakonstantinou \email{dev@@tpapak.com}, Guido
#' Schwarzer \email{guido.schwarzer@@uniklinik-freiburg.de}
#'
#' @seealso \code{\link{netmeta}}, \code{\link{netrank}},
#' \code{\link{plot.rankogram}}
#'
#' @references
#' Salanti G, Ades AE, Ioannidis JP (2011):
#' Graphical methods and numerical summaries for presenting results
#' from multiple-treatment meta-analysis: an overview and tutorial.
#' \emph{Journal of Clinical Epidemiology},
#' \bold{64}, 163--71
#'
#' @examples
#' data(Woods2010)
#' p1 <- pairwise(treatment, event = r, n = N, studlab = author,
#' data = Woods2010, sm = "OR")
#' net1 <- netmeta(p1, small.values = "desirable")
#'
#' ran1 <- rankogram(net1, nsim = 100)
#' ran1
#' print(ran1, cumulative.rankprob = TRUE)
#'
#' plot(ran1)
#'
#' @rdname rankogram
#' @export rankogram
rankogram <- function(x, nsim = 1000,
common = x$common, random = x$random,
small.values = x$small.values,
cumulative.rankprob = FALSE,
nchar.trts = x$nchar.trts,
warn.deprecated = gs("warn.deprecated"),
...) {
##
##
## (1) Check for netmeta object and upgrade object
##
##
chkclass(x, "netmeta")
x <- updateversion(x)
##
is.installed.package("mvtnorm")
##
##
## (2) Check other arguments
##
##
chknumeric(nsim, min = 1, length = 1)
##
small.values <- setsv(small.values)
##
chklogical(cumulative.rankprob)
##
if (is.null(nchar.trts))
nchar.trts <- 666
chknumeric(nchar.trts, length = 1)
##
## Check for deprecated arguments in '...'
##
args <- list(...)
chklogical(warn.deprecated)
##
missing.common <- missing(common)
common <- deprecated(common, missing.common, args, "comb.fixed",
warn.deprecated)
common <- deprecated(common, missing.common, args, "fixed",
warn.deprecated)
chklogical(common)
##
random <-
deprecated(random, missing(random), args, "comb.random", warn.deprecated)
chklogical(random)
##
##
## (3) Resampling to calculate ranking probabilites and SUCRAs
##
##
ranking.common <- ranking.matrix.common <- cumrank.matrix.common <- NULL
ranking.random <- ranking.matrix.random <- rank.cum.random <- NULL
##
if (common) {
res.f <- ranksampling(x, nsim, "common", small.values)
##
ranking.common <- res.f$ranking
ranking.matrix.common <- res.f$rankogram
cumrank.matrix.common <- res.f$cumrank
}
##
if (random) {
res.r <- ranksampling(x, nsim, "random", small.values)
##
ranking.random <- res.r$ranking
ranking.matrix.random <- res.r$rankogram
rank.cum.random <- res.r$cumrank
}
##
##
## (4) Create rankogram object
##
##
res <- list(ranking.common = ranking.common,
ranking.matrix.common = ranking.matrix.common,
cumrank.matrix.common = cumrank.matrix.common,
##
ranking.random = ranking.random,
ranking.matrix.random = ranking.matrix.random,
cumrank.matrix.random = rank.cum.random,
##
nsim = nsim,
##
common = common,
random = random,
small.values = small.values,
cumulative.rankprob = cumulative.rankprob,
##
nchar.trts = nchar.trts,
x = x,
version = packageDescription("netmeta")$Version
)
##
## Backward compatibility
##
res$fixed <- common
##
res$ranking.fixed <- ranking.common
res$ranking.matrix.fixed <- ranking.matrix.common
res$cumrank.matrix.fixed <- cumrank.matrix.common
##
class(res) <- "rankogram"
res
}
#' @rdname rankogram
#' @method print rankogram
#' @export
print.rankogram <- function(x,
common = x$common,
random = x$random,
cumulative.rankprob = x$cumulative.rankprob,
nchar.trts = x$nchar.trts,
digits = gs("digits.prop"),
legend = TRUE,
warn.deprecated = gs("warn.deprecated"),
...) {
##
##
## (1) Check for rankogram object and upgrade object
##
##
chkclass(x, "rankogram")
x <- updateversion(x)
##
##
## (2) Check other arguments
##
##
chklogical(cumulative.rankprob)
##
chknumeric(nchar.trts, length = 1)
##
chknumeric(digits, length = 1)
chklogical(legend)
##
## Check for deprecated arguments in '...'
##
args <- list(...)
chklogical(warn.deprecated)
##
missing.common <- missing(common)
common <- deprecated(common, missing.common, args, "comb.fixed",
warn.deprecated)
common <- deprecated(common, missing.common, args, "fixed",
warn.deprecated)
chklogical(common)
##
random <-
deprecated(random, missing(random), args, "comb.random", warn.deprecated)
chklogical(random)
##
##
## (3) Print results
##
##
if (common | random)
cat(paste0(if (cumulative.rankprob)
"Cumulative ranking probabilities" else "Rankogram",
" (based on ", x$nsim, " simulation",
if (x$nsim > 1) "s", ")\n\n"))
##
if (common) {
if (cumulative.rankprob)
rank.common <- x$cumrank.matrix.common
else
rank.common <- x$ranking.matrix.common
rownames(rank.common) <- treats(rank.common, nchar.trts)
##
cat("Common effects model: \n\n")
prmatrix(formatN(rank.common, digits), quote = FALSE, right = TRUE, ...)
if (random)
cat("\n")
}
##
if (random) {
if (cumulative.rankprob)
rank.random <- x$cumrank.matrix.random
else
rank.random <- x$ranking.matrix.random
rownames(rank.random) <-
treats(rank.random, nchar.trts)
##
cat("Random effects model: \n\n")
prmatrix(formatN(rank.random, digits), quote = FALSE, right = TRUE, ...)
}
##
## Add legend with abbreviated treatment labels
##
if ((common | random) & legend) {
if (common)
trts <- rownames(x$ranking.matrix.common)
else if (random)
trts <- rownames(x$ranking.matrix.random)
##
legendabbr(trts, treats(trts, nchar.trts), TRUE)
}
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.