View source: R/generatePoissonClones.R
generatePoissonClones | R Documentation |
Generates synthetic clones of a PET data matrix by adding Poisson-distributed noise to each non-zero voxel. This approach helps address the limitations of functional data analysis (FDA) in single-subject versus group (1 vs. Group) setups, where a single subject lacks sufficient variability to reliably estimate Simultaneous Confidence Corridors (SCCs).
generatePoissonClones(originalMatrix, numClones, lambdaFactor)
originalMatrix |
A numeric matrix where each row represents a flattened PET image. |
numClones |
An integer specifying the number of synthetic clones to generate. |
lambdaFactor |
A positive numeric value that scales the magnitude of Poisson noise. |
Values equal to 0
remain unchanged to preserve background regions.
NA
values are replaced with 0
before adding noise.
Poisson noise is applied only to positive values, scaled by lambdaFactor
.
Enables valid SCC estimation in single-subject settings by artificially increasing sample size.
A numeric matrix with numClones
rows, each representing a noisy version
of originalMatrix
with Poisson noise added.
# Load example input matrix for Poisson cloning
data("generatePoissonClonesExample", package = "neuroSCC")
# Select 10 random voxel positions for display
set.seed(123)
sampledCols <- sample(ncol(generatePoissonClonesExample), 10)
# Generate 1 synthetic clone
clones <- generatePoissonClones(generatePoissonClonesExample, numClones = 1, lambdaFactor = 0.25)
# Show voxel intensity values after cloning
clones[, sampledCols]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.