knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
Introduction to neutrosophic interval analysis including metric calculations and MSE estimation for survey data
Neha Purwar
Kaustav Aditya(https://orcid.org/0000-0003-2457-9494)
Pankaj Das (https://orcid.org/0000-0003-1672-2502)
Bharti
The R package is designed for neutrosophic regression type estimator to estimate the Finite Population Parameters. This package provides three different function i.e. compute_all_metrics, inputs and calculate_all_mse_neutrosophic. It provide neutrosophic descriptive statistics. Users can input values for population size as well as sample size for neutrosophic population at run time . In this package we can obtain the mse value for neutrosophic ratio-type estimators, neutrosophic exponential ratio-type estimator and neutrosophic regression type estimator.
This package provides specialized tools for analyzing interval-valued data within a neutrosophic statistical framework. Here's a detailed explanation of each function's utility:
1. compute_all_metrics()
Utility: This is the foundational function that calculates all essential statistics for neutrosophic interval data.
Key Features:
a. Calculates mean intervals for both auxiliary and study variables
b. Computes standard deviations for interval bounds
c. Determines coefficients of variation (CV) for both variables
d. Calculates kurtosis values to understand distribution shapes
e. Estimates correlations between interval variables
Use Cases:
Initial exploratory analysis of interval data
Preparing inputs for more advanced calculations
Understanding data variability and relationships between interval variables
2. calculate_all_mse_neutrosophic()
Utility: Computes five different types of Mean Squared Error (MSE) estimates specifically designed for neutrosophic interval data.
a. MSE Types Calculated:
b. Standard MSE: Basic interval MSE estimation
c. Ratio-adjusted MSE: Incorporates ratio estimation techniques
Kurtosis-adjusted MSE: Accounts for distribution shape through kurtosis
d. Exponential MSE: Uses exponential weighting factors
e. Regression MSE: Leverages correlation between variables
Use Cases:
i. Comparing different estimation methods for interval data
ii. Robust error estimation in neutrosophic statistics
iii. Model selection and evaluation
3. get_user_inputs()
Utility: Provides an interactive way to collect population and sample size parameters.
Key Features:
a. Guides users through parameter input process
b. Automatically calculates theta values (1/n - 1/N)
c. Validates input values to ensure n < N
Use Cases:
i. Interactive data analysis workflows
ii. Educational demonstrations
iii. Quick parameter estimation
4. format_mse_results()
Utility: Transforms raw MSE results into human-readable formatted output.
Key Features:
a. Clearly labels each MSE type
b. Formats numbers for consistent display
c. Returns ready-to-print output
Use Cases:
i. Reporting results in publications
ii. Creating readable output for presentations
iv. Quick visual comparison of MSE types
v. Data Management
5.calculate_pre()
The calculate_pre()
function computes the Percentage Relative Efficiency of different estimators compared to the regression estimator:
Interpretation:
a. Values > 100 indicate better efficiency than regression
b. Values < 100 indicate worse efficiency than regression
c. The regression estimator (PRE_r) is always 100 by definition
6. japan_neutro Dataset
Utility: Example dataset demonstrating proper input format and typical values.
Key Features:
a. Real-world interval data structure
b. Properly formatted columns
c. Demonstrates expected value ranges
Use Cases:
i. Package testing and validation
ii. Learning proper data formatting
iv. Benchmarking analyses
Consistent Interface: All functions follow R conventions for parameter naming and return structures
Error Handling: Comprehensive input validation prevents common mistakes
Reproducibility: Deterministic calculations ensure consistent results
Performance: Optimized for medium-sized datasets (hundreds to thousands of observations)
Integration: Works seamlessly with standard R data structures and pipelines
This package is particularly valuable for:
a. Researchers working with imprecise measurements or range-based data
b. Statisticians developing new neutrosophic methods
c. Data Scientists analyzing interval-censored data
d. Quality Control applications with tolerance intervals
e. Environmental Studies with measurement ranges
f. Economic Forecasting dealing with prediction intervals
The combination of these functions provides a complete workflow from data input through comprehensive analysis to formatted result reporting, all within the specialized domain of neutrosophic interval statistics.
```r
library(neutroSurvey)
data(japan_neutro)
metrics <- compute_all_metrics(japan_neutro) mse <- calculate_all_mse_neutrosophic( 0.01, 0.02, metrics$mean_interval_Y[1], metrics$mean_interval_Y[2], metrics$mean_interval_X[1], metrics$mean_interval_X[2], metrics$cv_interval_X[1], metrics$cv_interval_X[2], metrics$cv_interval_Y[1], metrics$cv_interval_Y[2], metrics$correlation_results[1], metrics$correlation_results[2], metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2] )
cat(format_mse_results(mse))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.