particle_swarm_optimization | R Documentation |
This function uses PSO, a stochastic population-based optimization algorithm, to find the optimal numerical association rule.
particle_swarm_optimization(
d = 10,
np = 10,
w = 0.7,
c1 = 1.5,
c2 = 1.5,
nfes = 1000,
features,
data,
is_time_series = FALSE
)
d |
Dimension of the problem (default: 10). |
np |
Population size (default: 10). |
w |
Inertia weight (default: 0.7). |
c1 |
Cognitive coefficient (default: 1.5). |
c2 |
Social coefficient (default: 1.5). |
nfes |
The maximum number of function evaluations (default: 1000). |
features |
A list containing information about features, including type and bounds. |
data |
A data frame representing instances in the dataset. |
is_time_series |
A boolean indicating whether the dataset is time series. |
A list containing the best solution, its fitness value, and the number of function evaluations and list of identified association rules.
Kennedy, J., & Eberhart, R. (1995). "Particle swarm optimization." Proceedings of ICNN'95 - International Conference on Neural Networks, 4, 1942–1948. IEEE. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1109/ICNN.1995.488968")}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.