knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(fig.width = 5, fig.height = 5)
if(Sys.info()['user'] == 'dturek') { baseDir <- '~/github/nimble/nimbleSCR/' ## Daniel } else if(Sys.info()['user'] == 'pidu') { baseDir <- 'C:/Users/pidu/PACKAGES/nimbleSCR/' ## Pierre } else if(Sys.info()['user'] == 'cymi') { baseDir <- 'C:/Personal_Cloud/OneDrive/Work/nimbleSCR/' ## Cyril } else if(Sys.info()['user'] == 'arichbi') { baseDir <- 'C:/PROJECTS/nimbleSCR/' ## Richard } else if(Sys.info()['user'] == 'weizhang'){ baseDir <- '/Users/weizhang/Documents/GitHub/nimbleSCR/' ## Wei } else baseDir <- NULL if(is.null(baseDir)) { load(system.file("extdata", "WolverinePointProcess_data.RData", package = "nimbleSCR")) } else { load(file.path(baseDir,"nimbleSCR/inst/extdata/WolverinePointProcess_data.RData")) }
This vignette demonstrates the different wolverine SCR models presented in "A flexible and efficient Bayesian implementation of point process models for spatial capture-recapture data" (Zhang et al, submitted) using NIMBLE [@de2017programming;@nimbleSoftware2020] and the nimbleSCR package [@nimbleSCR].
library(nimble) library(nimbleSCR) library(basicMCMCplots) library(coda)
Here, we define the first nimble
model.
It uses i) the Bernoulli point process for modelling the distribution of individual wolverine activity centers, ii) a Poisson point process for modelling individual detections, and iii) a semi-complete data-likelihood approach [@King2016] to estimate population size.
modelCode1 <- nimbleCode({ ##------ SPATIAL PROCESS ## Intercept and slope for the log-linear model for habitat selection intensity habCoeffInt ~ dnorm(0, sd = 10) habCoeffSlope ~ dnorm(0, sd = 10) ## Habitat intensity for each habitat window habIntensity[1:numHabWindows] <- exp(habCoeffInt + habCoeffSlope * habCovs[1:numHabWindows]) sumHabIntensity <- sum(habIntensity[1:numHabWindows]) logHabIntensity[1:numHabWindows] <- log(habIntensity[1:numHabWindows]) logSumHabIntensity <- log(sumHabIntensity) ## Activity centres of the observed individuals: a Bernoulli point process for(i in 1:numIdDetected){ sxy[i,1:2] ~ dbernppAC( lowerCoords = habLoCoords[1:numHabWindows, 1:2], upperCoords = habUpCoords[1:numHabWindows, 1:2], logIntensities = logHabIntensity[1:numHabWindows], logSumIntensity = logSumHabIntensity, habitatGrid = habitatGrid[1:y.max,1:x.max], numGridRows = y.max, numGridCols = x.max) }#i ##----- DEMOGRAPHIC PROCESS ## Number of individuals in the population N ~ dpois(sumHabIntensity) ## Number of detected individuals nDetectedIndiv ~ dbin(probDetection, N) ##----- DETECTION PROCESS ## Scale for the multivariate normal detection function sigma ~ dunif(0,10) ## Intercept and slope parameters for the log-linear model for detection intensity for(c in 1:numCounties){ detCoeffInt[c] ~ dnorm(0, sd = 10) }#c for(cc in 1:numDetCovs){ detCoeffSlope[cc] ~ dnorm(0, sd = 10) }#cc ## Baseline detection intensity for each detection window for(j in 1:numDetWindows){ detIntensity[j] <- exp( detCoeffInt[detCounties[j]] + detCoeffSlope[1] * detCovs[j,1] + detCoeffSlope[2] * detCovs[j,2] + detCoeffSlope[3] * detCovs[j,3]) }#j ## Detections of the observed individuals conditional on their activity centers for(i in 1:numIdDetected) { y[i,1:(maxDetections+1),1:3] ~ dpoisppDetection_normal( lowerCoords = detLoCoords[1:numDetWindows,1:2], upperCoords = detUpCoords[1:numDetWindows,1:2], s = sxy[i,1:2], sd = sigma, baseIntensities = detIntensity[1:numDetWindows], numMaxPoints = maxDetections, numWindows = numDetWindows, indicator = 1) }#i ## The probability that an individual in the population is detected at least once ## i.e. one minus the void probability over all detection windows probDetection <- 1 - marginalVoidProbNumIntegration( quadNodes = quadNodes[1:maxNumNodes,1:2,1:numHabWindows], quadWeights = quadWeights[1:numHabWindows], numNodes = numNodes[1:numHabWindows], lowerCoords = detLoCoords[1:numDetWindows,1:2], upperCoords = detUpCoords[1:numDetWindows,1:2], sd = sigma, baseIntensities = detIntensity[1:numDetWindows], habIntensities = habIntensity[1:numHabWindows], sumHabIntensity = sumHabIntensity, numObsWindows = numDetWindows, numHabWindows = numHabWindows ) logDetProb <- log(probDetection) normData ~ dnormalizer(logNormConstant = -numIdDetected*logDetProb) })
Next, we can define a second nimble
model based on the "usual" formulation of Bayesian SCR models.
In this model, individual activity center locations are modeled using a two-step process in which i) a categorical distribution is used to sample the habitat window the activity center is located in, and ii) the center of the selected habitat window is used as the location of the activity center inside the selected habitat window. The probability vector of the categorical process follows the intensity of the density point process of the first formulation.
Individual detections are not modeled continuously in space, instead they are aggregated at discrete detector locations and the number of detections at each detector is modeled using a Poisson distribution.
Finally, we use the data augmentation approach [@Royle2012] to derive population size instead of the semi-complete data-likelihood approach.
modelCode2 <- nimbleCode({ ##------ SPATIAL PROCESS habCoeffSlope ~ dnorm(0, sd = 10) ## Habitat intensity for each habitat window habIntensity[1:numHabWindows] <- exp(habCoeffSlope * habCovs[1:numHabWindows]) for(i in 1:M){ sID[i] ~ dcat(habIntensity[1:numHabWindows]) }#i ##----- DEMOGRAPHIC PROCESS psi ~ dunif(0,1) for(i in 1:M){ z[i] ~ dbern(psi) }#i ## Number of individuals in the population N <- sum(z[1:M]) ##----- DETECTION PROCESS ## Scale for the multivariate normal detection function sigma ~ dunif(0,10) ## Intercept and slope parameters for the log-linear model for detection intensity for(c in 1:numCounties){ detCoeffInt[c] ~ dnorm(0, sd = 10) }#c for(cc in 1:numDetCovs){ detCoeffSlope[cc] ~ dnorm(0, sd = 10) }#cc ## Baseline detection intensity for each detection window for(j in 1:numDetWindows){ lambdaTraps[j] <- exp( detCoeffInt[detCounties[j]] + detCoeffSlope[1] * detCovs[j,1] + detCoeffSlope[2] * detCovs[j,2] + detCoeffSlope[3] * detCovs[j,3]) }#j ## Detections of the observed individuals conditional on their activity centers for(i in 1:M) { y[i,1:lengthYCombined] ~ dpoisLocal_normal( lambdaTraps = lambdaTraps[1:numDetWindows], trapCoords = detCoords[1:numDetWindows,1:2], s = habCoords[sID[i],1:2], sigma = sigma, localTrapsIndices = localTrapsIndices[1:numHabWindows,1:numDetWindows], localTrapsNum = localTrapsNum[1:numHabWindows], habitatGrid = habitatGrid[1:y.max,1:x.max], lengthYCombined = lengthYCombined, indicator = z[i]) }#i })
For comparison purposes, we define a third nimble
model, which is a hybrid formulation of the two previous ones. It uses i) the Bernoulli point process for modelling the distribution of wolverine activity centers and ii) a Poisson point process to model individual detections in continuous space but uses iii) data augmentation instead of the semi-complete data-likelihood approach to estimate population size.
This formulation is expected to be both a better representation of the detection process (thus more accurate than model 2) and more efficient than model 1 because of the complexity of the semi-complete data likelihood calculation.
modelCode3 <- nimbleCode({ ##------ SPATIAL PROCESS habCoeffSlope ~ dnorm(0, sd = 10) ## Habitat intensity for each habitat window habIntensity[1:numHabWindows] <- exp(habCoeffSlope * habCovs[1:numHabWindows]) sumHabIntensity <- sum(habIntensity[1:numHabWindows]) logHabIntensity[1:numHabWindows] <- log(habIntensity[1:numHabWindows]) logSumHabIntensity <- log(sumHabIntensity) ## Activity centres of the observed individuals: a bernoulli point process for(i in 1:M){ sxy[i,1:2] ~ dbernppAC( lowerCoords = habLoCoords[1:numHabWindows,1:2], upperCoords = habUpCoords[1:numHabWindows,1:2], logIntensities = logHabIntensity[1:numHabWindows], logSumIntensity = logSumHabIntensity, habitatGrid = habitatGrid[1:y.max,1:x.max], numGridRows = y.max, numGridCols = x.max) }#i ##----- DEMOGRAPHIC PROCESS psi ~ dunif(0,1) for(i in 1:M){ z[i] ~ dbern(psi) }#i ## Number of individuals in the population N <- sum(z[1:M]) ##----- DETECTION PROCESS ## Scale for the half-normal detection function sigma ~ dunif(0,10) ## Intercept and slope parameters for the log-linear model for detection intensity for(c in 1:numCounties){ detCoeffInt[c] ~ dnorm(0, sd = 10) }#c for(cc in 1:numDetCovs){ detCoeffSlope[cc] ~ dnorm(0, sd = 10) }#cc ## Baseline detection intensity for each detection window for(j in 1:numDetWindows){ detIntensity[j] <- exp( detCoeffInt[detCounties[j]] + detCoeffSlope[1] * detCovs[j,1] + detCoeffSlope[2] * detCovs[j,2] + detCoeffSlope[3] * detCovs[j,3]) }#j ## Detections of the observed individuals conditional on their activity centers for(i in 1:M){ y[i,1:(maxDetections+1),1:3] ~ dpoisppDetection_normal( lowerCoords = detLoCoords[1:numDetWindows,1:2], upperCoords = detUpCoords[1:numDetWindows,1:2], s = sxy[i,1:2], sd = sigma, baseIntensities = detIntensity[1:numDetWindows], numMaxPoints = maxDetections, numWindows = numDetWindows, indicator = z[i]) }#i })
We can also define a fourth nimble
model, which uses the categorical distribution to model the distribution of wolverine activity centers, a Poisson point process to model individual detections in continuous space and data augmentation to estimate population size. This formulation is expected to be slower than version 3 because of the categorical process.
modelCode4 <- nimbleCode({ ##------ SPATIAL PROCESS habCoeffSlope ~ dnorm(0, sd = 10) ## Habitat intensity for each habitat window habIntensity[1:numHabWindows] <- exp(habCoeffSlope * habCovs[1:numHabWindows]) for(i in 1:M){ sID[i] ~ dcat(habIntensity[1:numHabWindows]) }#i ##----- DEMOGRAPHIC PROCESS psi ~ dunif(0,1) for(i in 1:M){ z[i] ~ dbern(psi) }#i ## Number of individuals in the population N <- sum(z[1:M]) ##----- DETECTION PROCESS ## Scale for the half-normal detection function sigma ~ dunif(0,10) ## Intercept and slope parameters for the log-linear model for detection intensity for(c in 1:numCounties){ detCoeffInt[c] ~ dnorm(0, sd = 10) }#c for(cc in 1:numDetCovs){ detCoeffSlope[cc] ~ dnorm(0, sd = 10) }#cc ## Baseline detection intensity for each detection window for(j in 1:numDetWindows){ detIntensity[j] <- exp( detCoeffInt[detCounties[j]] + detCoeffSlope[1] * detCovs[j,1] + detCoeffSlope[2] * detCovs[j,2] + detCoeffSlope[3] * detCovs[j,3]) }#j ## Detections of the observed individuals conditional on their activity centers for(i in 1:M){ y[i,1:(maxDetections+1),1:3] ~ dpoisppDetection_normal( lowerCoords = detLoCoords[1:numDetWindows,1:2], upperCoords = detUpCoords[1:numDetWindows,1:2], s = habCoords[sID[i],1:2], sd = sigma, baseIntensities = detIntensity[1:numDetWindows], numMaxPoints = maxDetections, numWindows = numDetWindows, indicator = z[i]) }#i })
We load the wolverine example data available directly via nimbleSCR
load("WolverinePointProcess_Data.RData")
Now, we can create the nimble
model objects, using the model structures
defined above, as well as the constants, data, and initial values.
Rmodel1 <- nimbleModel(modelCode1, constants1, data1, inits1) Rmodel2 <- nimbleModel(modelCode2, constants2, data2, inits2) Rmodel3 <- nimbleModel(modelCode3, constants3, data3, inits3) Rmodel4 <- nimbleModel(modelCode4, constants4, data4, inits4)
We configure an MCMC algorithm for each Rmodel
model object and we assign MCMC monitors to the different parameters we want to track (e.g. $N$, $\sigma$, ...)
conf1 <- configureMCMC( Rmodel1, monitors = params1, print = FALSE) conf2 <- configureMCMC( Rmodel2, monitors = params2, print = FALSE) conf3 <- configureMCMC( Rmodel3, monitors = params3, print = FALSE) conf4 <- configureMCMC( Rmodel4, monitors = params4, print = FALSE) Rmcmc1 <- buildMCMC(conf1) Rmcmc2 <- buildMCMC(conf2) Rmcmc3 <- buildMCMC(conf3) Rmcmc4 <- buildMCMC(conf4)
Finally, we compile the models and MCMC objects and execute the compiled MCMC runs for 4 chains of 11000 iterations each.
Cmodel1 <- compileNimble(Rmodel1) Cmcmc1 <- compileNimble(Rmcmc1, project = Rmodel1) MCMC_runtime1 <- system.time( MCMC_samples1 <- runMCMC(Cmcmc1, niter = 11000, nburnin = 1000, nchains = 4)) Cmodel2 <- compileNimble(Rmodel2) Cmcmc2 <- compileNimble(Rmcmc2, project = Rmodel2) MCMC_runtime2 <- system.time( MCMC_samples2 <- runMCMC(Cmcmc2, niter = 11000, nburnin = 1000, nchains = 4)) Cmodel3 <- compileNimble(Rmodel3) Cmcmc3 <- compileNimble(Rmcmc3, project = Rmodel3) MCMC_runtime3 <- system.time( MCMC_samples3 <- runMCMC(Cmcmc3, niter = 11000, nburnin = 1000, nchains = 4)) Cmodel4 <- compileNimble(Rmodel4) Cmcmc4 <- compileNimble(Rmcmc4, project = Rmodel4) MCMC_runtime4 <- system.time( MCMC_samples4 <- runMCMC(Cmcmc4, niter = 11000, nburnin = 1000, nchains = 4)) MCMC_samples1_summary <- samplesSummary(do.call(rbind,MCMC_samples1)) MCMC_samples2_summary <- samplesSummary(do.call(rbind,MCMC_samples2)) MCMC_samples3_summary <- samplesSummary(do.call(rbind,MCMC_samples3)) MCMC_samples4_summary <- samplesSummary(do.call(rbind,MCMC_samples4)) MCMC_samples1_ess <- effectiveSize(MCMC_samples1) MCMC_samples2_ess <- effectiveSize(MCMC_samples2) MCMC_samples3_ess <- effectiveSize(MCMC_samples3) MCMC_samples4_ess <- effectiveSize(MCMC_samples4)
##save(MCMC_samples1, MCMC_samples2, MCMC_samples3, MCMC_samples4, ## MCMC_runtime1, MCMC_runtime2, MCMC_runtime3, MCMC_runtime4, ## file = file.path(baseDir, ## "nimbleSCR/inst/extdata/WolverinePointProcess_samples.RData")) save(MCMC_samples1_summary, MCMC_samples2_summary, MCMC_samples3_summary, MCMC_samples4_summary, MCMC_samples1_ess, MCMC_samples2_ess, MCMC_samples3_ess, MCMC_samples4_ess, MCMC_runtime1, MCMC_runtime2, MCMC_runtime3, MCMC_runtime4, file = file.path(baseDir, "nimbleSCR/inst/extdata/WolverinePointProcess_summary.RData"))
##if(is.null(baseDir)) { ## load(system.file("extdata", ## "WolverinePointProcess_samples.RData", ## package = "nimbleSCR")) ##} else { ## load(file.path(baseDir,"nimbleSCR/inst/extdata/WolverinePointProcess_samples.RData")) ##} if(is.null(baseDir)) { load(system.file("extdata", "WolverinePointProcess_summary.RData", package = "nimbleSCR")) } else { load(file.path(baseDir,"nimbleSCR/inst/extdata/WolverinePointProcess_summary.RData")) }
We can then look at the summary of posterior distributions for the different models:
round(MCMC_samples1_summary, 2) round(MCMC_samples2_summary, 2) round(MCMC_samples3_summary, 2) round(MCMC_samples4_summary, 2)
chainsPlot(MCMC_samples1, var = c("N","sigma")) chainsPlot(MCMC_samples2, var = c("N","sigma")) chainsPlot(MCMC_samples3, var = c("N","sigma")) chainsPlot(MCMC_samples4, var = c("N","sigma"))
Next, we can check the posterior effective sample size (ESS) resulting from our 40 000 posterior samples for the population size estimates ($N$):
round(MCMC_samples1_ess,2)[c("N","sigma")] round(MCMC_samples2_ess,2)[c("N","sigma")] round(MCMC_samples3_ess,2)[c("N","sigma")] round(MCMC_samples4_ess,2)[c("N","sigma")]
We can also calculate the MCMC efficiency; this corresponds to the rate of generating effectively independent posterior samples, per second of MCMC runtime:
round(MCMC_samples1_ess,2)["N"]/round(MCMC_runtime1[3],1) round(MCMC_samples2_ess,2)["N"]/round(MCMC_runtime2[3],1) round(MCMC_samples3_ess,2)["N"]/round(MCMC_runtime3[3],1) round(MCMC_samples4_ess,2)["N"]/round(MCMC_runtime4[3],1)
We can see that model 2 and 4 seem to overestimate individual space use ($\sigma$), and underestimate $N$, as a consequence of the coarse resolutions used for the habitat and detectors and the aggregation of activity centers and detections to the centers of the habitat and detector windows, respectively.
We can also see that the semi-likelihood approach is much slower than the data-augmentation for comparable models and results (Runtime : r round(MCMC_runtime1[3]/3600,1)
hrs for model 1 against r round(MCMC_runtime3[3]/3600,1)
hrs for model 3).
However, when looking at the efficiency, model 2 seems to perform better, thanks to the faster detection model using discrete locations (Efficiency : r round(MCMC_samples2_ess,2)["N"]/round(MCMC_runtime2[3],1)
ESS/sec) (... but at the cost of poor population size estimates).
Overall, model 3, combining the detection point process and data augmentation seems to be the best compromise with accurate population size estimates and relatively good efficiency (Efficiency : r round(MCMC_samples3_ess,2)["N"]/round(MCMC_runtime3[3],1)
ESS/sec)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.