Nothing
# uscrime.R
#' U.S. Crime rates per 100,00 people
#'
#' U.S. Crime rates per 100,00 people for 7 categories in each of the 50 U.S.
#' states in 1977.
#'
#' There are two missing values.
#'
#' @format
#' A data frame with 50 observations on the following 8 variables.
#' \describe{
#' \item{state}{U.S. state}
#' \item{murder}{murders}
#' \item{rape}{rapes}
#' \item{robbery}{robbery}
#' \item{assault}{assault}
#' \item{burglary}{burglary}
#' \item{larceny}{larceny}
#' \item{autotheft}{automobile thefts}
#' }
#'
#' @source
#' Documentation Example 3 for PROC HPPRINCOMP.
#' http://documentation.sas.com/api/docsets/stathpug/14.2/content/stathpug_code_hppriex3.htm?locale=en
#'
#' @references
#' SAS/STAT User's Guide: High-Performance Procedures. The HPPRINCOMP Procedure.
#' http://support.sas.com/documentation/cdl/en/stathpug/67524/HTML/default/viewer.htm#stathpug_hpprincomp_toc.htm
#'
#' @examples
#'
#' library(nipals)
#' head(uscrime)
#'
#' # SAS deletes rows with missing values
#' dat <- uscrime[complete.cases(uscrime), ]
#' dat <- as.matrix(dat[ , -1])
#' m1 <- nipals(dat) # complete-data method
#'
#' # Traditional NIPALS with missing data
#' dat <- uscrime
#' dat <- as.matrix(dat[ , -1])
#' m2 <- nipals(dat, gramschmidt=FALSE) # missing
#' round(crossprod(m2$loadings),3) # Prin Comps not quite orthogonal
#'
#' # Gram-Schmidt corrected NIPALS
#' m3 <- nipals(dat, gramschmidt=TRUE) # TRUE is default
#' round(crossprod(m3$loadings),3) # Prin Comps are orthogonal
#'
"uscrime"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.