View source: R/nixtla_client_historic.R
| nixtla_client_historic | R Documentation | 
Sequential version of 'nixtla_client_historic' This is a private function of 'nixtlar'
nixtla_client_historic(
  df,
  freq = NULL,
  id_col = NULL,
  time_col = "ds",
  target_col = "y",
  level = NULL,
  quantiles = NULL,
  finetune_steps = 0,
  finetune_loss = "default",
  clean_ex_first = TRUE,
  model = "timegpt-1"
)
df | 
 A tsibble or a data frame with time series data.  | 
freq | 
 Frequency of the data.  | 
id_col | 
 Column that identifies each series.  | 
time_col | 
 Column that identifies each timestep.  | 
target_col | 
 Column that contains the target variable.  | 
level | 
 The confidence levels (0-100) for the prediction intervals.  | 
quantiles | 
 Quantiles to forecast. Should be between 0 and 1.  | 
finetune_steps | 
 Number of steps used to finetune 'TimeGPT' in the new data.  | 
finetune_loss | 
 Loss function to use for finetuning. Options are: "default", "mae", "mse", "rmse", "mape", and "smape".  | 
clean_ex_first | 
 Clean exogenous signal before making the forecasts using 'TimeGPT'.  | 
model | 
 Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-long-horizon" if you want to forecast more than one seasonal period given the frequency of the data.  | 
'TimeGPT”s forecast for the in-sample period.
## Not run: 
  nixtlar::nixtla_set_api_key("YOUR_API_KEY")
  df <- nixtlar::electricity
  fcst <- nixtlar::nixtla_client_historic(df, id_col="unique_id", level=c(80,95))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.