| GenLaplace | R Documentation |
Density, distribution function, quantile function and random generation for the univariate symmetric generalized Laplace distribution.
dgl(x, sigma = 1, shape = 1, log = FALSE)
pgl(x, sigma = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
qgl(p, sigma = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
rgl(n, sigma = 1, shape = 1)
x |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
sigma |
positive scale parameter. |
shape |
shape parameter. |
log,log.p |
logical; if |
lower.tail |
logical; if |
The univariate symmetric generalized Laplace distribution (Kotz et al, 2001, p.190) has density
f(x) =
\frac{2}{\sqrt{2\pi}\Gamma(s)\sigma^{s+1/2}}(\frac{|x|}{\sqrt{2}})^{\omega}B_{\omega}(\frac{\sqrt{2}|x|}{\sigma})
where \sigma is the scale parameter, \omega = s - 1/2, and s is the shape parameter. \Gamma denotes the Gamma function and B_{u} the modified Bessel function of the third kind with index u. The variance is s\sigma^{2}.
This distribution is the univariate and symmetric case of MultivariateGenLaplace.
dgl gives the density, pgl gives the distribution function, qgl gives the quantile function, and rgl generates random deviates.
Marco Geraci
Kotz, S., Kozubowski, T., and Podgorski, K. (2001). The Laplace distribution and generalizations. Boston, MA: Birkhauser.
MultivariateGenLaplace
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.