inst/doc/furthernotes.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----progress, eval=FALSE-----------------------------------------------------
# progressr::handlers("progress")
# results <- progressr::with_progress(run_nl_all(nl))

## ----eval=FALSE---------------------------------------------------------------
# install.packages('unixtools', repos = 'http://www.rforge.net/')
# unixtools::set.tempdir("<path-to-temp-dir>")

## ----eval=FALSE---------------------------------------------------------------
# to-report green.patches
#   report count patches with [pcolor = green]
# end

## ----eval=FALSE---------------------------------------------------------------
# library(future)
# plan(multiprocess)
# results <- run_nl_all(nl = nl)

## ----eval=FALSE---------------------------------------------------------------
# library(future)
# plan(list(sequential, multiprocess))
# results %<-% run_nl_all(nl = nl)

## ----eval=FALSE---------------------------------------------------------------
# library(future)
# plan(multisession)
# results <- run_nl_all(nl = nl, split = 4)

## ----eval=FALSE---------------------------------------------------------------
# # Load required packages
# library(future)
# library(future.batchtools)
# library(debugme)
# Sys.setenv(DEBUGME='batchtools')
# library(batchtools)
# 
# # Define the path to the ssh key for your machine:
# options(future.makeNodePSOCK.rshopts = c("-i", "/patch/to/id_rsa"))
# # Define server and your login credentials for the remote HPC:
# login <- tweak(remote, workers="server.HPC.de", user="username")
# 
# # Define plan for future environment:
# bsub <- tweak(batchtools_slurm, template = "slurm.tmpl", # define name of slurm tmeplate on HPC filesystem
#               resources = list(job.name = "jobname", # define jobname
#                                log.file = "jobname.log", # define logfile name
#                                queue = "medium",  # define HPC queue
#                                service = "normal", # define HPC service
#                                walltime = "00:30", # define walltime
#                                n_jobs = "1",   # define number of processes per job
#                                mem_cpu = "4000") # define memory per cpu
# 
# # Load HPC plan:
# plan(list(login,
#           bsub,
#           multisession))
# 
# # Execute simulations
# results <- run_nl_all(nl = nl)

## ----eval=FALSE---------------------------------------------------------------
# library(clustermq)
# 
# # First, we set the total number of jobs for the HPC
# # In this example we run each simulation as an individual job (recommended).
# # Thus to calculate the number of jobs we just multiply the number of parameterizations of the simdesign with the number of random seeds.
# # If you want to group several runs into the same job you can adjust this line and choose a lower number.
# # However, the number must be chosen that nrow(nl@simdesign@siminput)/njobs results in an integer value
# njobs <- nrow(nl@simdesign@siminput) * length(nl@simdesign@simseeds)
# 
# # Second, we generate vectors for looping trough model runs.
# # We generate a vector for simpinputrows by repeating the sequence of parameterisations for each seed.
# # Then, we generate a vector of random-seeds by repeating each seed for n times, where n is the number of siminputrows.
# siminputrows <- rep(seq(1:nrow(nl@simdesign@siminput)), length(nl@simdesign@simseeds))
# rndseeds <- rep(nl@simdesign@simseeds, each=nrow(nl@simdesign@siminput))
# 
# # Third, we define our simulation function
# # Please adjust the path to the temporary file directory
# simfun <- function(nl, siminputrow, rndseed, writeRDS=FALSE)
# {
#   unixtools::set.tempdir("/hpath/to/temp/dir")
#   library(nlrx)
#   res <- run_nl_one(nl = nl, siminputrow = siminputrow, seed = rndseed, writeRDS = TRUE)
#   return(res)
# }
# 
# # Fourth, use the Q function from the clustermq package to run the jobs on the HPC:
# # The q function loops through our siminputrows and rndseeds vectors.
# # The function creates njobs jobs and distributes corresponding chunks of the input vectors to these jobs for executing the simulation function simfun.
# # As constants we provide our nl object and the function parameter writeRDS.
# # If write RDS is true, an *.rds file will be written on the HPC after each jobs has finished.
# # This can be useful to gain results from completed runs after a crash has occured.
# results <- clustermq::Q(fun = simfun,
#                         siminputrow = siminputrows,
#                         rndseed = rndseeds,
#                         const = list(nl = nl,
#                                      writeRDS = TRUE),
#                         export = list(),
#                         seed = 42,
#                         n_jobs = njobs,
#                         template = list(job_name = "jobname", # define jobname
#                                         log.file = "jobname.log", # define logfile name
#                                         queue = "medium",  # define HPC queue
#                                         service = "normal", # define HPC service
#                                         walltime = "00:30:00", # define walltime
#                                         mem_cpu = "4000")) # define memory per cpu
# 
# # The Q function reports the individual results of each job as a list
# # Thus, we convert the list results to tibble format:
# results <- dplyr::bind_rows(results)

Try the nlrx package in your browser

Any scripts or data that you put into this service are public.

nlrx documentation built on Nov. 25, 2025, 5:08 p.m.