inst/doc/getstarted.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----eval=FALSE---------------------------------------------------------------
# library(nlrx)
# # Windows default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("C:/Program Files/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("C:/out")
# # Unix default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("/home/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("/home/out")
# 
# nl <- nl(nlversion = "6.0.3",
#          nlpath = netlogopath,
#          modelpath = modelpath,
#          jvmmem = 1024)

## ----eval=FALSE---------------------------------------------------------------
# nl@experiment <- experiment(expname="wolf-sheep",
#                             outpath=outpath,
#                             repetition=1,
#                             tickmetrics="true",
#                             idsetup="setup",
#                             idgo="go",
#                             runtime=50,
#                             evalticks=seq(40,50),
#                             metrics=c("count sheep", "count wolves", "count patches with [pcolor = green]"),
#                             variables = list('initial-number-sheep' = list(min=50, max=150, qfun="qunif"),
#                                              'initial-number-wolves' = list(min=50, max=150, qfun="qunif")),
#                             constants = list("model-version" = "\"sheep-wolves-grass\"",
#                                              "grass-regrowth-time" = 30,
#                                              "sheep-gain-from-food" = 4,
#                                              "wolf-gain-from-food" = 20,
#                                              "sheep-reproduce" = 4,
#                                              "wolf-reproduce" = 5,
#                                              "show-energy?" = "false"))

## ----eval=FALSE---------------------------------------------------------------
# nl@simdesign <- simdesign_lhs(nl=nl,
#                                samples=100,
#                                nseeds=3,
#                                precision=3)

## ----eval=FALSE---------------------------------------------------------------
# # Evaluate nl object:
# eval_variables_constants(nl)
# print(nl)
# 
# # Run all simulations (loop over all siminputrows and simseeds)
# results <- run_nl_all(nl)

## ----eval=FALSE---------------------------------------------------------------
# # Attach results to nl object:
# setsim(nl, "simoutput") <- results
# 
# # Write output to outpath of experiment within nl
# write_simoutput(nl)
# 
# # Do further analysis:
# analyze_nl(nl)

## ----eval=FALSE---------------------------------------------------------------
# library(nlrx)
# # Windows default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("C:/Program Files/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("C:/out")
# # Unix default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("/home/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("/home/out")
# 
# # Setup nl object
# nl <- nl(nlversion = "6.0.3",
#          nlpath = netlogopath,
#          modelpath = modelpath,
#          jvmmem = 1024)
# 
# # Attach experiment
# nl@experiment <- experiment(expname="wolf-sheep",
#                             outpath=outpath,
#                             repetition=1,
#                             tickmetrics="true",
#                             idsetup="setup",
#                             idgo="go",
#                             runtime=50,
#                             evalticks=seq(40,50),
#                             metrics=c("count sheep", "count wolves", "count patches with [pcolor = green]"),
#                             variables = list('initial-number-sheep' = list(min=50, max=150, qfun="qunif"),
#                                              'initial-number-wolves' = list(min=50, max=150, qfun="qunif")),
#                             constants = list("model-version" = "\"sheep-wolves-grass\"",
#                                              "grass-regrowth-time" = 30,
#                                              "sheep-gain-from-food" = 4,
#                                              "wolf-gain-from-food" = 20,
#                                              "sheep-reproduce" = 4,
#                                              "wolf-reproduce" = 5,
#                                              "show-energy?" = "false"))
# 
# # Attach simdesign
# nl@simdesign <- simdesign_lhs(nl=nl,
#                                samples=100,
#                                nseeds=3,
#                                precision=3)
# 
# # Evaluate nl object:
# eval_variables_constants(nl)
# print(nl)
# 
# # Run all simulations (loop over all siminputrows and simseeds)
# results <- run_nl_all(nl)
# 
# # Attach results to nl object:
# setsim(nl, "simoutput") <- results
# 
# # Write output to outpath of experiment within nl
# write_simoutput(nl)
# 
# # Do further analysis:
# analyze_nl(nl)

Try the nlrx package in your browser

Any scripts or data that you put into this service are public.

nlrx documentation built on Nov. 25, 2025, 5:08 p.m.