inst/doc/sensitivity.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----eval=FALSE---------------------------------------------------------------
# library(nlrx)
# # Windows default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("C:/Program Files/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("C:/out")
# # Unix default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("/home/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("/home/out")
# 
# nl <- nl(nlversion = "6.0.3",
#          nlpath = netlogopath,
#          modelpath = modelpath,
#          jvmmem = 1024)

## ----eval=FALSE---------------------------------------------------------------
# nl@experiment <- experiment(expname = "wolf-sheep-morris",
#                             outpath = outpath,
#                             repetition = 1,
#                             tickmetrics = "true",
#                             idsetup = "setup",
#                             idgo = "go",
#                             runtime = 500,
#                             evalticks = seq(300,500),
#                             metrics=c("count sheep", "count wolves", "count patches with [pcolor = green]"),
#                             variables = list("initial-number-sheep" = list(min=50, max=150, step=10, qfun="qunif"),
#                                              "initial-number-wolves" = list(min=50, max=150, step=10, qfun="qunif"),
#                                              "grass-regrowth-time" = list(min=0, max=100, step=10, qfun="qunif"),
#                                              "sheep-gain-from-food" = list(min=0, max=50, step=10, qfun="qunif"),
#                                              "wolf-gain-from-food" = list(min=0, max=100, step=10, qfun="qunif"),
#                                              "sheep-reproduce" = list(min=0, max=20, step=5, qfun="qunif"),
#                                              "wolf-reproduce" = list(min=0, max=20, step=5, qfun="qunif")),
#                             constants = list("model-version" = "\"sheep-wolves-grass\"",
#                                              "show-energy?" = "false"))

## ----eval=FALSE---------------------------------------------------------------
# nl@simdesign <- simdesign_morris(nl=nl,
#                                  morristype="oat",
#                                  morrislevels=4,
#                                  morrisr=1000,
#                                  morrisgridjump=2,
#                                  nseeds=5)

## ----eval=FALSE---------------------------------------------------------------
# library(future)
# plan(multisession)
# results <- run_nl_all(nl)

## ----eval=FALSE---------------------------------------------------------------
# setsim(nl, "simoutput") <- results
# saveRDS(nl, file.path(nl@experiment@outpath, "morris.rds"))

## ----eval=FALSE---------------------------------------------------------------
# morris <- analyze_nl(nl)

## ----eval=FALSE---------------------------------------------------------------
# library(nlrx)
# # Windows default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("C:/Program Files/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("C:/out")
# # Unix default NetLogo installation path (adjust to your needs!):
# netlogopath <- file.path("/home/NetLogo 6.0.3")
# modelpath <- file.path(netlogopath, "app/models/Sample Models/Biology/Wolf Sheep Predation.nlogo")
# outpath <- file.path("/home/out")
# 
# nl <- nl(nlversion = "6.0.3",
#          nlpath = netlogopath,
#          modelpath = modelpath,
#          jvmmem = 1024)

## ----eval=FALSE---------------------------------------------------------------
# nl@experiment <- experiment(expname = "wolf-sheep-morris",
#                             outpath = outpath,
#                             repetition = 1,
#                             tickmetrics = "true",
#                             idsetup = "setup",
#                             idgo = "go",
#                             runtime = 500,
#                             metrics=c("count sheep", "count wolves", "count patches with [pcolor = green]"),
#                             variables = list("initial-number-sheep" = list(min=50, max=150, step=10, qfun="qunif"),
#                                              "initial-number-wolves" = list(min=50, max=150, step=10, qfun="qunif"),
#                                              "grass-regrowth-time" = list(min=0, max=100, step=10, qfun="qunif"),
#                                              "sheep-gain-from-food" = list(min=0, max=50, step=10, qfun="qunif"),
#                                              "wolf-gain-from-food" = list(min=0, max=100, step=10, qfun="qunif"),
#                                              "sheep-reproduce" = list(min=0, max=20, step=5, qfun="qunif"),
#                                              "wolf-reproduce" = list(min=0, max=20, step=5, qfun="qunif")),
#                             constants = list("model-version" = "\"sheep-wolves-grass\"",
#                                              "show-energy?" = "false"))

## ----eval=FALSE---------------------------------------------------------------
# nl@simdesign <- simdesign_lhs(nl, samples=500, nseeds=1, precision=3)

## ----eval=FALSE---------------------------------------------------------------
# library(future)
# plan(multisession)
# results <- run_nl_all(nl, split=10)

## ----eval=FALSE---------------------------------------------------------------
# setsim(nl, "simoutput") <- results
# saveRDS(nl, file.path(nl@experiment@outpath, "lhs.rds"))

## ----eval=FALSE---------------------------------------------------------------
# library(tidyverse)
# input <- getsim(nl, "siminput") %>%    # Take input parameter matrix
#   dplyr::select(names(getexp(nl, "variables"))) %>%  # Select variable parameters only
#   dplyr::rename_all(~str_replace_all(., c("-" = "_", "\\s+" = "_"))) # Remove - and space characters.
# 
# output <- getsim(nl, "simoutput") %>%   # Take simulation output
#   dplyr::group_by(`random-seed`, siminputrow) %>% # Group by random seed and siminputrow
#   dplyr::summarise_at(getexp(nl, "metrics"), list(mean=mean, sd=sd)) %>% # Aggregate output
#   dplyr::ungroup() %>%  # Ungroup
#   dplyr::select(-`random-seed`, -siminputrow) %>%  # Only select metrics
#   dplyr::rename_all(~str_replace_all(., c("-" = "_", "\\s+" = "_", "\\[" = "_", "\\]" = "_", "=" = ""))) # Remove - and space characters.
# 
# # Perform pcc and src for each output separately (map)
# pcc.result <- purrr::map(names(output), function(x) sensitivity::pcc(X=input, y=output[,x], nboot = 100, rank = FALSE))
# src.result <- purrr::map(names(output), function(x) sensitivity::src(X=input, y=output[,x], nboot = 100, rank = FALSE))

## ----eval=FALSE---------------------------------------------------------------
# plot(pcc.result[[1]])

## ----eval=FALSE---------------------------------------------------------------
# pcc.result.tidy <- purrr::map_dfr(seq_along(pcc.result), function(x) {
#   pcc.result[[x]]$PCC %>%
#     tibble::rownames_to_column(var="parameter") %>%
#     dplyr::mutate(metric = names(output)[x])
# })
# 
# ggplot(pcc.result.tidy) +
#   coord_flip() +
#   facet_wrap(~metric) +
#   geom_point(aes(x=parameter, y=original, color=metric)) +
#   geom_errorbar(aes(x=parameter, ymin=`min. c.i.`, ymax=`max. c.i.`, color=metric), width=0.1)
# 
# src.result.tidy <- purrr::map_dfr(seq_along(src.result), function(x) {
#   src.result[[x]]$SRC %>%
#     tibble::rownames_to_column(var="parameter") %>%
#     dplyr::mutate(metric = names(output)[x])
# })
# 
# ggplot(src.result.tidy) +
#   coord_flip() +
#   facet_wrap(~metric) +
#   geom_point(aes(x=parameter, y=original, color=metric)) +
#   geom_errorbar(aes(x=parameter, ymin=`min. c.i.`, ymax=`max. c.i.`, color=metric), width=0.1)

Try the nlrx package in your browser

Any scripts or data that you put into this service are public.

nlrx documentation built on Nov. 25, 2025, 5:08 p.m.