lambda_estimate: Generate sample eigenvalues from population eigenvalues

Description Usage Arguments Value References Examples

View source: R/QuEST_wrappers.R

Description

The Marcenko Pastur (MP) law relates the limiting distribution of the sample eigenvalues to that of the population eigenvalues. In the finite-dimensional case, the population spectral distribution (PSD) can be represented as a sum of point masses, and the empirical spectral distribution (ESD) can be obtained by solving the discretized MP equation. The QuEST function(see references), uses the quantile function of the ESD to compute the sample eigenvalues for any given ratio c = p/n \in (0,∞).

Usage

1

Arguments

tau

(Required) A non-negative numeric vector of population eigenvalues.

n

(Required) A positive integer representing the number of datapoints of a hypothetical data matrix with dimension c(n, p = length(tau)).

Value

A numeric vector of the same length as tau, containing the sample eigenvalue estimates, sorted in ascending order.

References

Examples

1
lambda_estimate(tau = rep(1,200), n = 300)

Example output

  [1] 0.03814089 0.04389033 0.04871140 0.05323002 0.05761071 0.06192319
  [7] 0.06620726 0.07048840 0.07478297 0.07910003 0.08345078 0.08784499
 [13] 0.09227755 0.09676060 0.10130209 0.10588653 0.11053755 0.11524497
 [19] 0.12000656 0.12484467 0.12972694 0.13469270 0.13970789 0.14479921
 [25] 0.14995658 0.15517482 0.16047652 0.16582695 0.17127224 0.17676043
 [31] 0.18234927 0.18797958 0.19371251 0.19948839 0.20536641 0.21129059
 [37] 0.21731507 0.22338978 0.22956233 0.23578946 0.24211185 0.24849309
 [43] 0.25496717 0.26150408 0.26813178 0.27482585 0.28160908 0.28846185
 [49] 0.29540253 0.30241553 0.30951554 0.31669042 0.32395162 0.33129008
 [55] 0.33871430 0.34621816 0.35380718 0.36147839 0.36923397 0.37707457
 [61] 0.38499846 0.39301061 0.40110458 0.40929051 0.41755635 0.42591841
 [67] 0.43435796 0.44289854 0.45151371 0.46023528 0.46902809 0.47793315
 [73] 0.48690575 0.49599678 0.50515154 0.51443097 0.52377051 0.53324067
 [79] 0.54276790 0.55243096 0.56214922 0.57200711 0.58192019 0.59197456
 [85] 0.60208682 0.61233891 0.62265537 0.63310593 0.64363241 0.65428161
 [91] 0.66502481 0.67587315 0.68683874 0.69789005 0.70907863 0.72034015
 [97] 0.73175113 0.74323158 0.75486319 0.76657289 0.77842202 0.79037305
[103] 0.80243820 0.81463832 0.82692662 0.83937139 0.85189762 0.86458024
[109] 0.87736191 0.89027581 0.90332827 0.91647975 0.92979555 0.94320572
[115] 0.95677171 0.97046646 0.98428064 0.99826114 1.01234467 1.02659191
[121] 1.04097820 1.05548963 1.07017635 1.08498066 1.09994564 1.11507620
[127] 1.13032991 1.14576240 1.16135102 1.17707996 1.19299588 1.20906501
[133] 1.22529120 1.24170913 1.25828699 1.27503165 1.29197328 1.30909069
[139] 1.32637789 1.34386834 1.36155539 1.37941618 1.39748456 1.41576613
[145] 1.43424365 1.45292359 1.47182717 1.49095694 1.51029997 1.52986642
[151] 1.54967254 1.56972219 1.59001689 1.61055105 1.63134353 1.65240182
[157] 1.67373166 1.69533930 1.71722975 1.73940721 1.76188613 1.78467535
[163] 1.80778379 1.83122107 1.85499753 1.87912428 1.90361328 1.92847738
[169] 1.95373038 1.97938708 2.00546338 2.03197637 2.05894435 2.08638698
[175] 2.11432537 2.14278220 2.17178976 2.20137555 2.23156425 2.26238728
[181] 2.29389981 2.32613576 2.35913263 2.39297299 2.42768735 2.46337902
[187] 2.50010806 2.53798384 2.57712557 2.61767076 2.65979257 2.70370723
[193] 2.74968511 2.79810358 2.84944603 2.90443938 2.96420207 3.03066296
[199] 3.10790105 3.21099506

nlshrink documentation built on May 1, 2019, 8:42 p.m.