predict.nnet: Predict New Examples by a Trained Neural Net

View source: R/nnet.R

predict.nnetR Documentation

Predict New Examples by a Trained Neural Net

Description

Predict new examples by a trained neural net.

Usage

## S3 method for class 'nnet'
predict(object, newdata, type = c("raw","class"), ...)

Arguments

object

an object of class nnet as returned by nnet.

newdata

matrix or data frame of test examples. A vector is considered to be a row vector comprising a single case.

type

Type of output

...

arguments passed to or from other methods.

Details

This function is a method for the generic function predict() for class "nnet". It can be invoked by calling predict(x) for an object x of the appropriate class, or directly by calling predict.nnet(x) regardless of the class of the object.

Value

If type = "raw", the matrix of values returned by the trained network; if type = "class", the corresponding class (which is probably only useful if the net was generated by nnet.formula).

References

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

nnet, which.is.max

Examples

# use half the iris data
ir <- rbind(iris3[,,1], iris3[,,2], iris3[,,3])
targets <- class.ind( c(rep("s", 50), rep("c", 50), rep("v", 50)) )
samp <- c(sample(1:50,25), sample(51:100,25), sample(101:150,25))
ir1 <- nnet(ir[samp,], targets[samp,],size = 2, rang = 0.1,
            decay = 5e-4, maxit = 200)
test.cl <- function(true, pred){
        true <- max.col(true)
        cres <- max.col(pred)
        table(true, cres)
}
test.cl(targets[-samp,], predict(ir1, ir[-samp,]))

# or
ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
        species = factor(c(rep("s",50), rep("c", 50), rep("v", 50))))
ir.nn2 <- nnet(species ~ ., data = ird, subset = samp, size = 2, rang = 0.1,
               decay = 5e-4, maxit = 200)
table(ird$species[-samp], predict(ir.nn2, ird[-samp,], type = "class"))

nnet documentation built on May 3, 2023, 5:09 p.m.

Related to predict.nnet in nnet...