asy_uni_an: Asymmetric uniform attribute noise

View source: R/056_asy_uni_an.R

asy_uni_anR Documentation

Asymmetric uniform attribute noise

Description

Introduction of Asymmetric uniform attribute noise into a classification dataset.

Usage

## Default S3 method:
asy_uni_an(x, y, level, sortid = TRUE, ...)

## S3 method for class 'formula'
asy_uni_an(formula, data, ...)

Arguments

x

a data frame of input attributes.

y

a factor vector with the output class of each sample.

level

a double vector with the noise levels in [0,1] to be introduced into each attribute.

sortid

a logical indicating if the indices must be sorted at the output (default: TRUE).

...

other options to pass to the function.

formula

a formula with the output class and, at least, one input attribute.

data

a data frame in which to interpret the variables in the formula.

Details

Asymmetric uniform attribute noise corrupts (level[i]·100)% of the values for each attribute A[i] in the dataset. In order to corrupt an attribute A[i], (level[i]·100)% of the samples in the dataset are chosen. Then, their values for A[i] are replaced by random different ones between the minimum and maximum of the domain of the attribute following a uniform distribution (for numerical attributes) or choosing a random value (for nominal attributes).

Value

An object of class ndmodel with elements:

xnoise

a data frame with the noisy input attributes.

ynoise

a factor vector with the noisy output class.

numnoise

an integer vector with the amount of noisy samples per attribute.

idnoise

an integer vector list with the indices of noisy samples per attribute.

numclean

an integer vector with the amount of clean samples per attribute.

idclean

an integer vector list with the indices of clean samples per attribute.

distr

an integer vector with the samples per class in the original data.

model

the full name of the noise introduction model used.

param

a list of the argument values.

call

the function call.

Note

Noise model adapted from the papers in References.

References

A. Petety, S. Tripathi, and N. Hemachandra. Attribute noise robust binary classification. In Proc. 34th AAAI Conference on Artificial Intelligence, pages 13897-13898, 2020.

See Also

symd_gimg_an, unc_vgau_an, print.ndmodel, summary.ndmodel, plot.ndmodel

Examples

# load the dataset
data(iris2D)

# usage of the default method
set.seed(9)
outdef <- asy_uni_an(x = iris2D[,-ncol(iris2D)], y = iris2D[,ncol(iris2D)], 
                         level = c(0.1, 0.2))

# show results
summary(outdef, showid = TRUE)
plot(outdef)

# usage of the method for class formula
set.seed(9)
outfrm <- asy_uni_an(formula = Species ~ ., data = iris2D,
                         level = c(0.1, 0.2))

# check the match of noisy indices
identical(outdef$idnoise, outfrm$idnoise)


noisemodel documentation built on Oct. 17, 2022, 9:05 a.m.