icci | R Documentation |
Calculate confidence intervals of AIC and BIC for non-nested models.
icci(object1, object2, conf.level = 0.95, ll1 = llcont, ll2 = llcont)
object1 |
a model object |
object2 |
a model object |
conf.level |
confidence level of the interval |
ll1 |
an optional function for computing log-likelihood contributions of object1 |
ll2 |
an optional function for computing log-likelihood contributions of object2 |
Functionality is currently available for models of classes
lm
, glm
, glm.nb
, clm
, hurdle
, zeroinfl
, mlogit
, nls
, polr
, rlm
, and lavaan
.
Users should take care to ensure that the two models have the same dependent variable (or, for lavaan objects, identical modeled variables), with observations ordered identically within each model object. Assuming the same data matrix is used to fit each model, observation ordering should generally be identical. There are currently no checks for this, however.
Note: if models are nested or if the "variance test" from
vuongtest()
indicates models are indistinguishable, then the
intervals returned from icci()
will be incorrect.
an object of class icci
containing test results.
Ed Merkle and Dongjun You
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307-333. <DOI:10.2307/1912557>
Merkle, E. C., You, D., & Preacher, K. (2016). Testing non-nested structural equation models. Psychological Methods, 21, 151-163. <DOI:10.1037/met0000038>
## Not run:
## Count regression comparisons
require(MASS)
house1 <- glm(Freq ~ Infl + Type + Cont, family=poisson, data=housing)
house2 <- glm(Freq ~ Infl + Sat, family=poisson, data=housing)
## CI for BIC
icci(house2, house1)
## Further comparisons to hurdle, zero-inflated models
require(pscl)
bio1 <- glm(art ~ fem + mar + phd + ment, family=poisson, data=bioChemists)
bio2 <- hurdle(art ~ fem + mar + phd + ment, data=bioChemists)
bio3 <- zeroinfl(art ~ fem + mar + phd + ment, data=bioChemists)
icci(bio2, bio1)
icci(bio3, bio1)
icci(bio3, bio2)
## Latent variable model comparisons
require(lavaan)
HS.model <- 'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit1 <- cfa(HS.model, data=HolzingerSwineford1939, meanstructure=TRUE)
fit2 <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
icci(fit1, fit2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.