R/RegAdjust.R

Defines functions RegAdjust

Documented in RegAdjust

#' The regression adjustment estimator of the dose-response curve.
#'
#' This function implements the standard regression adjustment or G-computation
#' estimator of the dose-response curve or its derivative via (partial) local
#' polynomial regression.
#'
#' @param Y The input n-dimensional outcome variable vector.
#' @param X The input n*(d+1) matrix. The first column of X stores the
#' treatment/exposure variables, while the other d columns are confounding variables.
#' @param t_eval The m-dimensional vector for evaluating the dose-response curve.
#' (Default: t_eval = NULL. Then, t_eval = \code{X[,1]}, which consists of the observed
#' treatment variables.)
#' @param h,b The bandwidth parameters for the treatment/exposure variable
#' and confounding variables (Default: h = NULL, b = NULL. Then, the rule-of-thumb
#' bandwidth selector in Eq. (A1) of Yang and Tschernig (1999) is used with
#' additional scaling factors C_h and C_b, respectively.)
#' @param C_h,C_b The scaling factors for the rule-of-thumb bandwidth parameters.
#' @param print_bw The indicator of whether the current bandwidth parameters
#' should be printed to the console. (Default: print_bw = TRUE.)
#' @param degree Degree of local polynomials. (Default: degree = 2.)
#' @param deriv_ord The order of the estimated derivative of the conditional mean
#' outcome function. (Default: deriv_ord = 1.)
#' @param kernT,kernS The names of kernel functions for the treatment/exposure
#' variable and confounding variables. (Default: kernT = "epanechnikov",
#' kernS = "epanechnikov".)
#' @param parallel The indicator of whether the function should be parallel
#' executed. (Default: parallel = TRUE.)
#' @param cores The number of cores for parallel execution. (Default: cores = 6.)
#'
#' @return The estimated dose-response curves or its derivatives evaluated
#' at points \code{t_eval}.
#'
#' @author Yikun Zhang, \email{yikunzhang@@foxmail.com}
#' @references Zhang, Y., Chen, Y.-C., and Giessing, A. (2024)
#' \emph{Nonparametric Inference on Dose-Response Curves Without the Positivity Condition.}
#' \url{https://arxiv.org/abs/2405.09003}.
#'
#' Fan, J. and Gijbels, I. (1996) \emph{Local Polynomial Modelling and its
#' Applications. Chapman & Hall/CRC.}
#' @keywords regression polynomial local (partial)
#'
#' @examples
#' \donttest{
#'   library(parallel)
#'   set.seed(123)
#'   n <- 300
#'
#'   S2 <- cbind(2 * runif(n) - 1, 2 * runif(n) - 1)
#'   Z2 <- 4 * S2[, 1] + S2[, 2]
#'   E2 <- 0.2 * runif(n) - 0.1
#'   T2 <- cos(pi * Z2^3) + Z2 / 4 + E2
#'   Y2 <- T2^2 + T2 + 10 * Z2 + rnorm(n, mean = 0, sd = 1)
#'   X2 <- cbind(T2, S2)
#'
#'   t_qry2 = seq(min(T2) + 0.01, max(T2) - 0.01, length.out = 100)
#'   chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
#'   if (nzchar(chk) && chk == "TRUE") {
#'     # use 2 cores in CRAN/Travis/AppVeyor
#'     num_workers <- 2L
#'   } else {
#'     # use all cores in devtools::test()
#'     num_workers <- parallel::detectCores()
#'   }
#'   Y_RA2 = RegAdjust(Y2, X2, t_eval = t_qry2, h = NULL, b = NULL, C_h = 7, C_b = 3,
#'                     print_bw = FALSE, degree = 2, deriv_ord = 0,
#'                     kernT = "epanechnikov", kernS = "epanechnikov",
#'                     parallel = TRUE, cores = num_workers)
#' }
#'
#' @export
#' @importFrom parallel mclapply
#'

RegAdjust <- function(Y, X, t_eval = NULL, h = NULL, b = NULL, C_h = 7, C_b = 3,
                      print_bw = TRUE, degree = 2, deriv_ord = 0,
                      kernT = "epanechnikov", kernS = "epanechnikov",
                      parallel = TRUE, cores = 6) {

  if (is.null(t_eval)) {
    t_eval <- X[, 1]
  }

  n <- nrow(X)

  if (parallel) {
    # Use parallel computing
    beta_mat <- mclapply(t_eval, function(t) {
      X_mat <- as.matrix(cbind(rep(t, n), X[, -1]))
      return(LocalPolyReg(Y, X, x_eval = X_mat, degree = degree, deriv_ord = deriv_ord,
                   h = h, b = b, C_h = C_h, C_b = C_b, print_bw = print_bw,
                   kernT = kernT, kernS = kernS))
    }, mc.cores = cores)
    beta_mat <- do.call(cbind, beta_mat)
  } else {
    beta_mat <- matrix(0, nrow = n, ncol = length(t_eval))
    for (i in 1:length(t_eval)) {
      X_mat <- as.matrix(cbind(rep(t_eval[i], n), X[, -1]))
      beta_mat[, i] <- LocalPolyReg(Y, X, x_eval = X_mat, degree = degree,
                                    deriv_ord = deriv_ord, h = h, b = b,
                                    C_h = C_h, C_b = C_b, print_bw = print_bw,
                                    kernT = kernT, kernS = kernS)
    }
  }

  m_est <- colMeans(beta_mat)
  return(m_est)
}

Try the npDoseResponse package in your browser

Any scripts or data that you put into this service are public.

npDoseResponse documentation built on May 29, 2024, 7:05 a.m.