Nothing
#' The regression adjustment estimator of the dose-response curve.
#'
#' This function implements the standard regression adjustment or G-computation
#' estimator of the dose-response curve or its derivative via (partial) local
#' polynomial regression.
#'
#' @param Y The input n-dimensional outcome variable vector.
#' @param X The input n*(d+1) matrix. The first column of X stores the
#' treatment/exposure variables, while the other d columns are confounding variables.
#' @param t_eval The m-dimensional vector for evaluating the dose-response curve.
#' (Default: t_eval = NULL. Then, t_eval = \code{X[,1]}, which consists of the observed
#' treatment variables.)
#' @param h,b The bandwidth parameters for the treatment/exposure variable
#' and confounding variables (Default: h = NULL, b = NULL. Then, the rule-of-thumb
#' bandwidth selector in Eq. (A1) of Yang and Tschernig (1999) is used with
#' additional scaling factors C_h and C_b, respectively.)
#' @param C_h,C_b The scaling factors for the rule-of-thumb bandwidth parameters.
#' @param print_bw The indicator of whether the current bandwidth parameters
#' should be printed to the console. (Default: print_bw = TRUE.)
#' @param degree Degree of local polynomials. (Default: degree = 2.)
#' @param deriv_ord The order of the estimated derivative of the conditional mean
#' outcome function. (Default: deriv_ord = 1.)
#' @param kernT,kernS The names of kernel functions for the treatment/exposure
#' variable and confounding variables. (Default: kernT = "epanechnikov",
#' kernS = "epanechnikov".)
#' @param parallel The indicator of whether the function should be parallel
#' executed. (Default: parallel = TRUE.)
#' @param cores The number of cores for parallel execution. (Default: cores = 6.)
#'
#' @return The estimated dose-response curves or its derivatives evaluated
#' at points \code{t_eval}.
#'
#' @author Yikun Zhang, \email{yikunzhang@@foxmail.com}
#' @references Zhang, Y., Chen, Y.-C., and Giessing, A. (2024)
#' \emph{Nonparametric Inference on Dose-Response Curves Without the Positivity Condition.}
#' \url{https://arxiv.org/abs/2405.09003}.
#'
#' Fan, J. and Gijbels, I. (1996) \emph{Local Polynomial Modelling and its
#' Applications. Chapman & Hall/CRC.}
#' @keywords regression polynomial local (partial)
#'
#' @examples
#' \donttest{
#' library(parallel)
#' set.seed(123)
#' n <- 300
#'
#' S2 <- cbind(2 * runif(n) - 1, 2 * runif(n) - 1)
#' Z2 <- 4 * S2[, 1] + S2[, 2]
#' E2 <- 0.2 * runif(n) - 0.1
#' T2 <- cos(pi * Z2^3) + Z2 / 4 + E2
#' Y2 <- T2^2 + T2 + 10 * Z2 + rnorm(n, mean = 0, sd = 1)
#' X2 <- cbind(T2, S2)
#'
#' t_qry2 = seq(min(T2) + 0.01, max(T2) - 0.01, length.out = 100)
#' chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
#' if (nzchar(chk) && chk == "TRUE") {
#' # use 2 cores in CRAN/Travis/AppVeyor
#' num_workers <- 2L
#' } else {
#' # use all cores in devtools::test()
#' num_workers <- parallel::detectCores()
#' }
#' Y_RA2 = RegAdjust(Y2, X2, t_eval = t_qry2, h = NULL, b = NULL, C_h = 7, C_b = 3,
#' print_bw = FALSE, degree = 2, deriv_ord = 0,
#' kernT = "epanechnikov", kernS = "epanechnikov",
#' parallel = TRUE, cores = num_workers)
#' }
#'
#' @export
#' @importFrom parallel mclapply
#'
RegAdjust <- function(Y, X, t_eval = NULL, h = NULL, b = NULL, C_h = 7, C_b = 3,
print_bw = TRUE, degree = 2, deriv_ord = 0,
kernT = "epanechnikov", kernS = "epanechnikov",
parallel = TRUE, cores = 6) {
if (is.null(t_eval)) {
t_eval <- X[, 1]
}
n <- nrow(X)
if (parallel) {
# Use parallel computing
beta_mat <- mclapply(t_eval, function(t) {
X_mat <- as.matrix(cbind(rep(t, n), X[, -1]))
return(LocalPolyReg(Y, X, x_eval = X_mat, degree = degree, deriv_ord = deriv_ord,
h = h, b = b, C_h = C_h, C_b = C_b, print_bw = print_bw,
kernT = kernT, kernS = kernS))
}, mc.cores = cores)
beta_mat <- do.call(cbind, beta_mat)
} else {
beta_mat <- matrix(0, nrow = n, ncol = length(t_eval))
for (i in 1:length(t_eval)) {
X_mat <- as.matrix(cbind(rep(t_eval[i], n), X[, -1]))
beta_mat[, i] <- LocalPolyReg(Y, X, x_eval = X_mat, degree = degree,
deriv_ord = deriv_ord, h = h, b = b,
C_h = C_h, C_b = C_b, print_bw = print_bw,
kernT = kernT, kernS = kernS)
}
}
m_est <- colMeans(beta_mat)
return(m_est)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.