View source: R/generate_data.R
generate_data | R Documentation |
Generate the data from two simulation cases in Tian, Y., & Feng, Y. (2021).
generate_data(n = 1000, model.no = 1)
n |
the generated sample size. Default = 1000. |
model.no |
the model number in Tian, Y., & Feng, Y. (2021). Can be 1 or 2. Default = 1. |
A list with two components x and y. x is the predictor matrix and y is the label vector.
Tian, Y., & Feng, Y. (2021). Neyman-Pearson Multi-class Classification via Cost-sensitive Learning. Submitted. Available soon on arXiv.
npcs
, predict.npcs
, error_rate
, and gamma_smote
.
set.seed(123, kind = "L'Ecuyer-CMRG")
train.set <- generate_data(n = 1000, model.no = 1)
x <- train.set$x
y <- train.set$y
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.