Nothing
##'Beta-blockers Data
##'
##'
##'Contains the data of the 22-center clinical trial of beta-blockers for
##'reducing mortality after myocardial infarction.
##'
##'
##'@name betablockers
##'@docType data
##'@format A numeric matrix with four columns:
##'
##'center: center identification code.
##'
##'deaths: the number of deaths in the center.
##'
##'total: the number of patients taking beta-blockers in the center.
##'
##'treatment: 0 for control, and 1 for treatment.
##'@seealso \code{\link{mlogit}},\code{\link{cnmms}}.
##'@references
##'
##'Wang, Y. (2010). Maximum likelihood computation for fitting semiparametric
##'mixture models. \emph{Statistics and Computing}, \bold{20}, 75-86.
##'@source
##'
##'Aitkin, M. (1999). A general maximum likelihood analysis of variance
##'components in generalized linear models. \emph{Biometrics}, \bold{55},
##'117-128.
##'@keywords datasets
##'@examples
##'
##'
##'data(betablockers)
##'x = mlogit(betablockers)
##'cnmms(x)
##'
##'
NULL
##'Z-values of BRCA Data
##'
##'
##'Contains 3226 \eqn{z}-values computed by Efron (2004) from the data obtained
##'in a well-known microarray experiment concerning two types of genetic
##'mutations causing increased breast cancer risk, BRCA1 and BRCA2.
##'
##'
##'@name brca
##'@docType data
##'@format A numeric vector containing 3226 \eqn{z}-values.
##'@seealso \code{\link{npnorm}},\code{\link{cnm}}.
##'@references
##'
##'Efron, B. (2004). Large-scale simultaneous hypothesis testing: the choice of
##'a null hypothesis. \emph{Journal of the American Statistical Association},
##'\bold{99}, 96-104.
##'
##'Wang, Y. (2007). On fast computation of the non-parametric maximum
##'likelihood estimate of a mixing distribution. \emph{Journal of the Royal
##'Statistical Society, Ser. B}, \bold{69}, 185-198.
##'
##'Wang, Y. and C.-S. Chee (2012). Density estimation using nonparametric and
##'semiparametric mixtures. \emph{Statistical Modelling: An International
##'Journal}, \bold{12}, 67-92.
##'@keywords datasets
##'@examples
##'
##'
##'data(brca)
##'x = npnorm(brca)
##'plot(cnm(x), x)
##'
##'
NULL
##'Lung Cancer Data
##'
##'
##'Contains the data of 14 studies of the effect of smoking on lung cancer.
##'
##'
##'@name lungcancer
##'@docType data
##'@format A numeric matrix with four columns:
##'
##'study: study identification code.
##'
##'lungcancer: the number of people diagnosed with lung cancer.
##'
##'size: the number of people in the study.
##'
##'smoker: 0 for smoker, and 1 for non-smoker.
##'@seealso \code{\link{mlogit}},\code{\link{cnmms}}.
##'@references
##'
##'Wang, Y. (2010). Maximum likelihood computation for fitting semiparametric
##'mixture models. \emph{Statistics and Computing}, \bold{20}, 75-86.
##'@source
##'
##'Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed
##'model likelihoods with an automated Monte Carlo EM algorithm. \emph{Journal
##'of the Royal Statistical Society, Ser. B}, \bold{61}, 265-285.
##'@keywords datasets
##'@examples
##'
##'
##'data(lungcancer)
##'x = mlogit(lungcancer)
##'cnmms(x)
##'
##'
NULL
##'Class 'nspmix'
##'
##'
##'Class \code{nspmix} is an object returned by function \code{cnm},
##'\code{cnmms}, \code{cnmpl} or \code{cnmap}.
##'
##'Function \code{plot.nspmix} plots either the mixture model, if the family of
##'the mixture provides an implementation of the generic \code{plot} function,
##'or the gradient function.
##'
##'
##'\code{data} must belong to a mixture family, as specified by its class.
##'
##'@name plot.nspmix
##'@aliases nspmix plot.nspmix
##'@param x an object of a mixture model class
##'@param data a data set from the mixture model
##'@param type the type of function to be plotted: the probability model of the
##'mixture family (\code{probability}), or the gradient function
##'(\code{gradient}).
##'@param ... arguments passed on to the \code{plot} function called.
##'@author Yong Wang <yongwang@@auckland.ac.nz>
##'@seealso \code{\link{nnls}}, \code{\link{cnm}}, \code{\link{cnmms}},
##'\code{\link{cnmpl}}, \code{\link{cnmap}}, \code{\link{npnorm}},
##'\code{\link{nppois}}.
##'@references
##'
##'Wang, Y. (2007). On fast computation of the non-parametric maximum
##'likelihood estimate of a mixing distribution. \emph{Journal of the Royal
##'Statistical Society, Ser. B}, \bold{69}, 185-198.
##'
##'Wang, Y. (2010). Maximum likelihood computation for fitting semiparametric
##'mixture models. \emph{Statistics and Computing}, \bold{20}, 75-86
##'@keywords function
##'@examples
##'
##'## Poisson mixture
##'x = rnppois(200, disc(c(1,4), c(0.7,0.3)))
##'r = cnm(x)
##'plot(r, x, "p")
##'plot(r, x, "g")
##'
##'## Normal mixture
##'x = rnpnorm(200, mix=disc(c(0,4), c(0.3,0.7)), sd=1)
##'r = cnm(x, init=list(beta=0.5)) # sd = 0.5
##'plot(r, x, "p")
##'plot(r, x, "g")
##'
##'@usage
##'\method{plot}{nspmix}(x, data, type=c("probability","gradient"), ...)
##'
##'@export plot.nspmix
NULL
##'Illness Spells and Frequencies of Thai Preschool Children
##'
##'
##'Contains the results of a cohort study in north-east Thailand in which 602
##'preschool children participated. For each child, the number of illness
##'spells \eqn{x}, such as fever, cough or running nose, is recorded for all
##'2-week periods from June 1982 to September 1985. The frequency for each
##'value of \eqn{x} is saved in the data set.
##'
##'
##'@name thai
##'@docType data
##'@format A data frame with 24 rows and 2 variables:
##'
##'x: values of \eqn{x}.
##'
##'freq: frequencies for each value of \eqn{x}.
##'@seealso \code{\link{nppois}},\code{\link{cnm}}.
##'@references
##'
##'Wang, Y. (2007). On fast computation of the non-parametric maximum
##'likelihood estimate of a mixing distribution. \emph{Journal of the Royal
##'Statistical Society, Ser. B}, \bold{69}, 185-198.
##'@source
##'
##'Bohning, D. (2000). \emph{Computer-assisted Analysis of Mixtures and
##'Applications: Meta-analysis, Disease Mapping, and Others}. Boca Raton:
##'Chapman and Hall-CRC.
##'@keywords datasets
##'@examples
##'
##'
##'data(thai)
##'x = nppois(thai)
##'plot(cnm(x), x)
##'
##'
NULL
##'Toxoplasmosis Data
##'
##'
##'Contains the number of subjects testing positively for toxoplasmosis in 34
##'cities of El Salvador, with various rainfalls.
##'
##'
##'@name toxo
##'@docType data
##'@format A numeric matrix with four columns:
##'
##'city: city identification code.
##'
##'y: the number of subjects testing positively for toxoplasmosis.
##'
##'n: the number of subjects tested.
##'
##'rainfall: the annual rainfall of the city, in meters.
##'@seealso \code{\link{mlogit}},\code{\link{cnmms}}.
##'@references
##'
##'Efron, B. (1986). Double exponential families and their use in generalized
##'linear regression. \emph{Journal of the American Statistical Association},
##'\bold{81}, 709-721.
##'
##'Aitkin, M. (1996). A general maximum likelihood analysis of overdispersion
##'in generalised linear models. \emph{Statistics and Computing}, \bold{6},
##'251-262.
##'
##'Wang, Y. (2010). Maximum likelihood computation for fitting semiparametric
##'mixture models. \emph{Statistics and Computing}, \bold{20}, 75-86.
##'@keywords datasets
##'@examples
##'
##'
##'data(toxo)
##'x = mlogit(toxo)
##'cnmms(x)
##'
##'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.