Nothing
## ---- eval=FALSE, message=FALSE, warning=FALSE--------------------------------
# install.packages("odetector")
## ---- eval=FALSE, message=FALSE, warning=FALSE--------------------------------
# if(!require(devtools))
# install.packages("devtools", repo="https://cloud.r-project.org")
# devtools::install_github("zcebeci/odetector")
## ---- echo=TRUE, message=FALSE, warning=FALSE---------------------------------
library(odetector)
## ----echo=TRUE, message=FALSE, warning=FALSE, cols.print=5, rows.print=10-----
data(x3p4c)
head(x3p4c)
tail(x3p4c)
## ----fig.width=7, fig.height=6------------------------------------------------
pairs(x3p4c[,-4], col=x3p4c[,4]+1)
## ---- eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE---------------------
# if(!require(ppclust)){
# install.packages("ppclust", repo="https://cloud.r-project.org");
# }
## ---- echo=TRUE, message=FALSE, warning=FALSE---------------------------------
x <- x3p4c[,-4]
head(x)
tail(x)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
require(ppclust)
res.upfc <- upfc(x, centers=4)
head(res.upfc$t)
## ---- eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE---------------------
# if(!require(devtools))
# install.packages("devtools", repo="https://cloud.r-project.org")
# suppressMessages(devtools::install_github("zcebeci/fcvalid"))
## ---- eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE---------------------
# library(ppclust)
# library(fcvalid)
# c1 <- 2 #Starting number of clusters
# c2 <- 5 #Final number of clusters
# indnames <- c("PC","MPC","PE","XB","Kwon", "TSS", "CL", "FS", "PBMF","FSIL","FHV", "APD")
# indvals <- matrix(ncol=length(indnames), nrow=(c2-c1+1))
# colnames(indvals) <- indnames
# rownames(indvals) <- paste0("c=", c1:c2)
# i <- 1
# for(c in c1:c2){
# resfcm <- ppclust::fcm(x=x, centers=c, nstart=3)
# indvals[i,1] <- pc(resfcm)
# indvals[i,2] <- mpc(resfcm)
# indvals[i,3] <- pe(resfcm)
# indvals[i,4] <- xb(resfcm)
# indvals[i,5] <- kwon(resfcm)
# indvals[i,6] <- tss(resfcm)
# indvals[i,7] <- cl(resfcm)
# indvals[i,8] <- fs(resfcm)
# indvals[i,9] <- pbm(resfcm)
# indvals[i,10] <- si(resfcm)$sif
# indvals[i,11] <- fhv(resfcm)
# indvals[i,12] <- apd(resfcm)
# i <- i+1
# }
## ---- eval=FALSE, message=FALSE, warning=FALSE--------------------------------
# # Display the fuzzy indices in various runs of FCM
# indvals <- round(t(indvals),3)
# print(indvals)
# # Optimal number of clusters with Fuzzy Hypervolume (FHV) index
# optk <- colnames(indvals)[which.min(indvals["FHV",])]
# optk
# k <- unname(which.min(indvals["FHV",])) + 1
# k
## ----eval=FALSE, echo=TRUE, message=FALSE, warning=FALSE----------------------
# res.upfc <- upfc(x, centers=k)
# head(res.upfc$t)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
res.out <- detect.outliers(res.upfc)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
res.out <- detect.outliers(res.upfc, alpha=0.05, alpha2=0.4)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
str(res.out)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
res.out$outliers1
res.out$outliers2
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
print(res.out)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
summary(res.out)
## ----fig.width=7, fig.height=6------------------------------------------------
plot(res.out, ot=1)
## ----fig.width=7, fig.height=6------------------------------------------------
plot(res.out, ot=2)
## ----fig.width=7, fig.height=6------------------------------------------------
pairs(res.out)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
Xr <- remove.outliers(res.out, sc=FALSE)
## ----fig.width=7, fig.height=6------------------------------------------------
pairs(Xr, col=x3p4c[,4]+1)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
res.out <- detect.outliers(res.upfc, alpha=0.1)
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
res.out$outliers1
plot(res.out, ot=1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.