Nothing
#' The oncomsm package
#'
#' @description This package implements methods to dynamically predict response
#' and progression of individuals in early oncology trials using parametric
#' multi-state models and Bayesian inference.
#' This allows the dynamic computation of Probability of Success for a wide
#' The inference is implemented using 'rstan'.
#'
#' @docType package
#' @name oncomsm-package
#' @aliases oncomsm
#' @useDynLib oncomsm, .registration = TRUE
#' @import methods
#' @import tibble
#' @import stringr
#' @import Rcpp
#' @import dplyr
#' @import purrr
#' @import RcppNumerical
#' @importFrom rstan sampling
#' @importFrom rstantools rstan_config
#' @importFrom rlang .data
#'
#' @references
#' Stan Development Team (2021). "RStan: the R interface to Stan".
#' R package version 2.21.3. https://mc-stan.org
#'
NULL
## usethis namespace: start
#' @importFrom magrittr %>%
#' @importFrom Rcpp sourceCpp
## usethis namespace: end
NULL
# just for not getting RCMD CHECK warnings about undefined.
# (see magrittr package)
. <- NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.