Optimizer | R Documentation |
A Optimizer
R6 object defines a numerical optimizer based on an
optimization function implemented in R.
The main advantage of working with an Optimizer
object instead of
using the optimization function directly lies in the standardized inputs and
outputs.
Any R function that fulfills the following four constraints can be defined as
an Optimizer
object:
It must have an input for a function
, the objective function to be
optimized.
It must have an input for a numeric
vector, the initial values from
where the optimizer starts.
It must have a ...
argument for additional parameters passed on to
the objective function.
The output must be a named list
, including the optimal function
value and the optimal parameter vector.
label
A character
, the label for the optimizer.
algorithm
A function
, the optimization algorithm.
arg_objective
A character
, the argument name for the objective function in
algorithm
.
arg_initial
A character
, the argument name for the initial values in
algorithm
.
out_value
A character
, the element name for the optimal function value in
the output list
of algorithm
.
out_parameter
A character
, the element name for the optimal parameters in the
output list
of algorithm
.
direction
Either "min"
(if the optimizer minimizes) or "max"
(if the optimizer maximizes).
arguments
A named list
of custom arguments for algorithm
. Defaults
are used for arguments that are not specified.
seconds
A numeric
, a time limit in seconds. Optimization is interrupted
prematurely if seconds
is exceeded.
No time limit if seconds = Inf
(the default).
Note the limitations documented in setTimeLimit
.
hide_warnings
Either TRUE
to hide warnings during optimization, or FALSE
(default) else.
output_ignore
A character
vector
of elements to ignore in the
optimization output.
new()
Initializes a new Optimizer
object.
Optimizer$new(which, ...)
which
A character
, either one of optimizer_dictionary$keys
or
"custom"
(in which case $definition()
must be used to
define the optimizer details).
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
A new Optimizer
object.
definition()
Defines an optimizer.
Optimizer$definition( algorithm, arg_objective, arg_initial, out_value, out_parameter, direction )
algorithm
A function
, the optimization algorithm.
arg_objective
A character
, the argument name for the objective function in
algorithm
.
arg_initial
A character
, the argument name for the initial values in
algorithm
.
out_value
A character
, the element name for the optimal function value in
the output list
of algorithm
.
out_parameter
A character
, the element name for the optimal parameters in the
output list
of algorithm
.
direction
Either "min"
(if the optimizer minimizes) or "max"
(if the optimizer maximizes).
Invisibly the Optimizer
object.
set_arguments()
Sets optimizer arguments.
Optimizer$set_arguments(...)
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
The Optimizer
object.
validate()
Validates the Optimizer
object. A time limit in seconds for
the optimization can be set via the $seconds
field.
Optimizer$validate( objective = optimizeR::test_objective, initial = round(stats::rnorm(2)), ..., direction = "min" )
objective
A function
to be optimized that
has at least one argument that receives a numeric
vector
and returns a single numeric
value.
Alternatively, it can also be a Objective
object for more
flexibility.
initial
A numeric
vector with starting parameter values for the optimization.
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
direction
Either "min"
for minimization or "max"
for maximization.
The Optimizer
object.
minimize()
Performing minimization.
Optimizer$minimize(objective, initial, ...)
objective
A function
to be optimized that
has at least one argument that receives a numeric
vector
and returns a single numeric
value.
Alternatively, it can also be a Objective
object for more
flexibility.
initial
A numeric
vector with starting parameter values for the optimization.
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
A named list
, containing at least these five elements:
value
A numeric
, the minimum function value.
parameter
A numeric
vector, the parameter vector
where the minimum is obtained.
seconds
A numeric
, the optimization time in seconds.
initial
A numeric
, the initial parameter values.
error
Either TRUE
if an error occurred, or FALSE
, else.
Appended are additional output elements of the optimizer.
If an error occurred, then the error message is also appended as element
error_message
.
If the time limit was exceeded, this also counts as an error. In addition,
the flag time_out = TRUE
is appended.
Optimizer$new("stats::nlm")$ minimize(objective = function(x) x^4 + 3*x - 5, initial = 2)
maximize()
Performing maximization.
Optimizer$maximize(objective, initial, ...)
objective
A function
to be optimized that
has at least one argument that receives a numeric
vector
and returns a single numeric
value.
Alternatively, it can also be a Objective
object for more
flexibility.
initial
A numeric
vector with starting parameter values for the optimization.
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
A named list
, containing at least these five elements:
value
A numeric
, the maximum function value.
parameter
A numeric
vector, the parameter vector
where the maximum is obtained.
seconds
A numeric
, the optimization time in seconds.
initial
A numeric
, the initial parameter values.
error
Either TRUE
if an error occurred, or FALSE
, else.
Appended are additional output elements of the optimizer.
If an error occurred, then the error message is also appended as element
error_message
.
If the time limit was exceeded, this also counts as an error. In addition,
the flag time_out = TRUE
is appended.
Optimizer$new("stats::nlm")$ maximize(objective = function(x) -x^4 + 3*x - 5, initial = 2)
optimize()
Performing minimization or maximization.
Optimizer$optimize(objective, initial, direction = "min", ...)
objective
A function
to be optimized that
has at least one argument that receives a numeric
vector
and returns a single numeric
value.
Alternatively, it can also be a Objective
object for more
flexibility.
initial
A numeric
vector with starting parameter values for the optimization.
direction
Either "min"
for minimization or "max"
for maximization.
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
A named list
, containing at least these five elements:
value
A numeric
, the maximum function value.
parameter
A numeric
vector, the parameter vector
where the maximum is obtained.
seconds
A numeric
, the optimization time in seconds.
initial
A numeric
, the initial parameter values.
error
Either TRUE
if an error occurred, or FALSE
, else.
Appended are additional output elements of the optimizer.
If an error occurred, then the error message is also appended as element
error_message
.
If the time limit was exceeded, this also counts as an error. In addition,
the flag time_out = TRUE
is appended.
objective <- function(x) -x^4 + 3*x - 5 optimizer <- Optimizer$new("stats::nlm") optimizer$optimize(objective = objective, initial = 2, direction = "min") optimizer$optimize(objective = objective, initial = 2, direction = "max")
print()
Prints the optimizer label.
Optimizer$print(...)
...
Optionally additional arguments to be passed to the optimizer algorithm. Without specifications, default values are used.
Invisibly the Optimizer
object.
clone()
The objects of this class are cloneable with this method.
Optimizer$clone(deep = FALSE)
deep
Whether to make a deep clone.
### Task: compare minimization with 'stats::nlm' and 'pracma::nelder_mead'
# 1. define objective function and initial values
objective <- TestFunctions::TF_ackley
initial <- c(3, 3)
# 2. get overview of optimizers in dictionary
optimizer_dictionary$keys
# 3. define 'nlm' optimizer
nlm <- Optimizer$new(which = "stats::nlm")
# 4. define the 'pracma::nelder_mead' optimizer (not contained in the dictionary)
nelder_mead <- Optimizer$new(which = "custom")
nelder_mead$definition(
algorithm = pracma::nelder_mead, # the optimization function
arg_objective = "fn", # the argument name for the objective function
arg_initial = "x0", # the argument name for the initial values
out_value = "fmin", # the element for the optimal function value in the output
out_parameter = "xmin", # the element for the optimal parameters in the output
direction = "min" # the optimizer minimizes
)
# 5. compare the minimization results
nlm$minimize(objective, initial)
nelder_mead$minimize(objective, initial)
## ------------------------------------------------
## Method `Optimizer$minimize`
## ------------------------------------------------
Optimizer$new("stats::nlm")$
minimize(objective = function(x) x^4 + 3*x - 5, initial = 2)
## ------------------------------------------------
## Method `Optimizer$maximize`
## ------------------------------------------------
Optimizer$new("stats::nlm")$
maximize(objective = function(x) -x^4 + 3*x - 5, initial = 2)
## ------------------------------------------------
## Method `Optimizer$optimize`
## ------------------------------------------------
objective <- function(x) -x^4 + 3*x - 5
optimizer <- Optimizer$new("stats::nlm")
optimizer$optimize(objective = objective, initial = 2, direction = "min")
optimizer$optimize(objective = objective, initial = 2, direction = "max")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.