orders: Sampling from k-th Order Statistics of New Families of Distributions

Set of tools to generate samples of k-th order statistics and others quantities of interest from new families of distributions. The main references for this package are: C. Kleiber and S. Kotz (2003) Statistical size distributions in economics and actuarial sciences; Gentle, J. (2009), Computational Statistics, Springer-Verlag; Naradajah, S. and Rocha, R. (2016), <DOI:10.18637/jss.v069.i10> and Stasinopoulos, M. and Rigby, R. (2015), <DOI:10.1111/j.1467-9876.2005.00510.x>. The families of distributions are: Benini distributions, Burr distributions, Dagum distributions, Feller-Pareto distributions, Generalized Pareto distributions, Inverse Pareto distributions, The Inverse Paralogistic distributions, Marshall-Olkin G distributions, exponentiated G distributions, beta G distributions, gamma G distributions, Kumaraswamy G distributions, generalized beta G distributions, beta extended G distributions, gamma G distributions, gamma uniform G distributions, beta exponential G distributions, Weibull G distributions, log gamma G I distributions, log gamma G II distributions, exponentiated generalized G distributions, exponentiated Kumaraswamy G distributions, geometric exponential Poisson G distributions, truncated-exponential skew-symmetric G distributions, modified beta G distributions, exponentiated exponential Poisson G distributions, Poisson-inverse gaussian distributions, Skew normal type 1 distributions, Skew student t distributions, Singh-Maddala distributions, Sinh-Arcsinh distributions, Sichel distributions, Zero inflated Poisson distributions.

Getting started

Package details

AuthorCarlos Alberto Cardozo Delgado
MaintainerCarlos Alberto Cardozo Delgado <cardozorpackages@gmail.com>
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the orders package in your browser

Any scripts or data that you put into this service are public.

orders documentation built on Nov. 14, 2023, 9:07 a.m.