pdose_direct_solver | R Documentation |
The direct learning optimization function for personalized dose finding.
pdose_direct_solver(
B,
X,
A,
a_dist,
a_seq,
R,
lambda,
bw,
rho,
eta,
gamma,
tau,
epsilon,
btol,
ftol,
gtol,
maxitr,
verbose,
ncore
)
B |
A matrix of the parameters |
X |
The covariate matrix |
A |
observed dose levels |
a_dist |
A kernel distance matrix for the observed dose and girds of the dose levels |
a_seq |
A grid of dose levels |
R |
The perosnalzied medicine reward |
lambda |
The penalty for the GCV for the kernel ridge regression |
bw |
A Kernel bandwidth, assuming each variable have unit variance |
rho |
(don't change) Parameter for control the linear approximation in line search |
eta |
(don't change) Factor for decreasing the step size in the backtracking line search |
gamma |
(don't change) Parameter for updating C by Zhang and Hager (2004) |
tau |
(don't change) Step size for updating |
epsilon |
(don't change) Parameter for approximating numerical gradient |
btol |
(don't change) The |
ftol |
(don't change) Estimation equation 2-norm tolerance level |
gtol |
(don't change) Gradient tolerance level |
maxitr |
Maximum number of iterations |
verbose |
Should information be displayed |
The optimizer B
for the esitmating equation.
Zhou, W., Zhu, R., & Zeng, D. (2021). A parsimonious personalized dose-finding model via dimension reduction. Biometrika, 108(3), 643-659. DOI: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/biomet/asaa087")}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.