Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning = FALSE,
message = FALSE,
fig.width = 6,
fig.height = 4,
fig.align = "center"
)
## ----install,eval=FALSE-------------------------------------------------------
# # Development version
# devtools::install_github("flystar233/outqrf")
## ----usage, echo=TRUE---------------------------------------------------------
library(outqrf)
#Generate data with outliers in numeric columns
irisWithOutliers <- generateOutliers(iris, p = 0.05,seed =2024)
# Find outliers by quantile random forest regressions
out <- outqrf(irisWithOutliers,quantiles_type=400)
out$outliers
## ----Evaluation1, echo=TRUE---------------------------------------------------
library(outqrf)
irisWithOutliers <- generateOutliers(iris, p = 0.05,seed =2024)
qrf <- outqrf(irisWithOutliers,quantiles_type=400)
evaluateOutliers(iris,irisWithOutliers,qrf$outliers)
## ----Evaluation1_1, eval=FALSE------------------------------------------------
# plot(qrf)
## ----Evaluation1_2, echo=FALSE------------------------------------------------
library(outqrf)
irisWithOutliers <- generateOutliers(iris, p = 0.05,seed =2024)
qrf <- outqrf(irisWithOutliers,quantiles_type=400)
plot(qrf)
## ----Evaluation2, echo=TRUE---------------------------------------------------
library(outqrf)
library(ggplot2)
library(dplyr)
data <- diamonds|>select(price,carat,cut,color,clarity)
data2 <- outqrf::generateOutliers(data, p = 0.001,seed =2024)
# 108
qrf <- outqrf(data2,num.threads=8,quantiles_type=400)
#The process can be slow because it needs to predict the value at 400|1000 quantiles for each observation.
evaluateOutliers(data,data2,qrf$outliers)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.