pcode_lkh_1d | R Documentation |
Obtain estimates of both structural and nuisance parameters of an ODE model by parameter cascade method.
pcode_lkh_1d(data, likelihood.fun, time, ode.model, par.names, state.names, par.initial, basis.list, lambda, controls)
data |
A data frame or a matrix contain observations from each dimension of the ODE model. |
likelihood.fun |
A function computes the likelihood or the loglikelihood of the errors. |
time |
A vector contains observation ties or a matrix if time points are different between dimesion. |
ode.model |
An R function that computes the time derivative of the ODE model given observations of states variable and structural parameters. |
par.names |
The names of structural parameters defined in the 'ode.model'. |
state.names |
The names of state variables defined in the 'ode.model'. |
par.initial |
Initial value of structural parameters to be optimized. |
basis.list |
A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions. |
lambda |
Penalty parameter. |
controls |
A list of control parameters. See ‘Details’. |
The controls
argument is a list providing addition inputs for the nonlinear least square optimizer:
nquadpts
Determine the number of quadrature points for approximating an integral. Default is 101.
smooth.lambda
Determine the smoothness penalty for obtaining initial value of nuisance parameters.
tau
Initial value of Marquardt parameter. Small values indicate good initial values for structural parameters.
tolx
Tolerance for parameters of objective functions. Default is set at 1e-6.
tolg
Tolerance for the gradient of parameters of objective functions. Default is set at 1e-6.
maxeval
The maximum number of evaluation of the optimizer. Default is set at 20.
structural.par |
The structural parameters of the ODE model. |
nuisance.par |
The nuisance parameters or the basis coefficients for interpolating observations. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.