tc.test | R Documentation |
This function computes test of the equal predictive accuracy for time clusters. The null hypothesis of this test is that the equal predictive accuracy for the two methods holds within each of the time clusters. The test is suitable if either: K \ge 2
and significance level
\le 0.08326
, or 2 \le K \leq 14
and significance level
\le 0.1
, or K = \{ 2,3 \}
and significance level
\le 0.2
, where K
denotes the number of time clusters.
tc.test(evaluated1,evaluated2,realized,loss.type="SE",cl)
evaluated1 |
same as in |
evaluated2 |
same as in |
realized |
same as in |
loss.type |
same as in |
cl |
|
class htest
object, list
of
statistic |
test statistic |
parameter |
|
alternative |
alternative hypothesis of the test |
p.value |
p-value |
method |
name of the test |
data.name |
names of the tested data |
Qu, R., Timmermann, A., Zhu, Y. 2024. Comparing forecasting performance with panel data. International Journal of Forecasting 40, 918–941.
pool_av.test
data(forecasts)
y <- t(observed)
f.bsr <- matrix(NA,ncol=ncol(y),nrow=56)
f.dma <- f.bsr
# extract prices predicted by BSR rec and DMA methods
for (i in 1:56)
{
f.bsr[i,] <- predicted[[i]][,1]
f.dma[i,] <- predicted[[i]][,9]
}
# 3 time clusters: Jun 1996 -- Nov 2007, Dec 2007 -- Jun 2009, Jul 2009 - Aug 2021
# rownames(observed)[1]
# rownames(observed)[139]
# rownames(observed)[158]
t.cl <- c(1,139,158)
t <- tc.test(evaluated1=f.bsr,evaluated2=f.dma,realized=y,loss.type="SE",cl=t.cl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.