palasso | R Documentation |
The function palasso
fits the paired lasso.
Use this function if you have paired covariates
and want a sparse model.
palasso(y = y, X = X, max = 10, ...)
y |
response:
vector of length |
X |
covariates:
list of matrices,
each with |
max |
maximum number of non-zero coefficients:
positive numeric, or |
... |
further arguments for |
Let x
denote one entry of the list X
. See glmnet
for alternative specifications of y
and x
. Among the further
arguments, family
must equal "gaussian"
, "binomial"
,
"poisson"
, or "cox"
, and penalty.factor
must not be
used.
Hidden arguments:
Deactivate adaptive lasso by setting adaptive
to FALSE
,
activate standard lasso by setting standard
to TRUE
,
and activate shrinkage by setting shrink
to TRUE
.
This function returns an object of class palasso
.
Available methods include
predict
,
coef
,
weights
,
fitted
,
residuals
,
deviance
,
logLik
,
and summary
.
Armin Rauschenberger, Iiuliana Ciocanea-Teodorescu, Marianne A. Jonker, Renee X. Menezes, and Mark A. van de Wiel (2020). "Sparse classification with paired covariates." Advances in Data Analysis and Classification 14:571-588. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11634-019-00375-6")}. (Click here to access PDF. Contact: armin.rauschenberger@uni.lu.)
set.seed(1)
n <- 50; p <- 20
y <- rbinom(n=n,size=1,prob=0.5)
X <- lapply(1:2,function(x) matrix(rnorm(n*p),nrow=n,ncol=p))
object <- palasso(y=y,X=X,family="binomial") # adaptive=TRUE,standard=FALSE
names(object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.