| palasso | R Documentation |
The function palasso fits the paired lasso.
Use this function if you have paired covariates
and want a sparse model.
palasso(y = y, X = X, max = 10, ...)
y |
response:
vector of length |
X |
covariates:
list of matrices,
each with |
max |
maximum number of non-zero coefficients:
positive numeric, or |
... |
further arguments for |
Let x denote one entry of the list X. See glmnet
for alternative specifications of y and x. Among the further
arguments, family must equal "gaussian", "binomial",
"poisson", or "cox", and penalty.factor must not be
used.
Hidden arguments:
Deactivate adaptive lasso by setting adaptive to FALSE,
activate standard lasso by setting standard to TRUE,
and activate shrinkage by setting shrink to TRUE.
This function returns an object of class palasso.
Available methods include
predict,
coef,
weights,
fitted,
residuals,
deviance,
logLik,
and summary.
Armin Rauschenberger, Iiuliana Ciocanea-Teodorescu, Marianne A. Jonker, Renee X. Menezes, and Mark A. van de Wiel (2020). "Sparse classification with paired covariates." Advances in Data Analysis and Classification 14:571-588. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11634-019-00375-6")}. (Click here to access PDF. Contact: armin.rauschenberger@uni.lu.)
set.seed(1)
n <- 50; p <- 20
y <- rbinom(n=n,size=1,prob=0.5)
X <- lapply(1:2,function(x) matrix(rnorm(n*p),nrow=n,ncol=p))
object <- palasso(y=y,X=X,family="binomial") # adaptive=TRUE,standard=FALSE
names(object)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.