Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, echo=TRUE, eval=FALSE, results='hold', warning=FALSE, include=TRUE----
# library(pannotator)
#
# options(shiny.port = httpuv::randomPort(), shiny.launch.browser = .rs.invokeShinyWindowExternal)
#
# run_app()
## ----echo=TRUE, eval=FALSE, results='hold', warning=FALSE, include=TRUE-------
#
# library(dplyr)
# library(mapview)
# library(RColorBrewer)
# library(sf)
#
#
# df_annotation <- readRDS("C:/user_1_annotations.rds") # read in the .rds file
# df_annotation <- st_as_sf(df_annotation, wkt = "geometry",crs = 4326) #define
# #the geometry
#
# df_annotation$dd2 <- as.numeric(df_annotation$dd2) # dd2 = -999 where crowns
# # have not been assessed for health (NA); range = 0 for no live leaves (entirely
# # dead) to 100 for entire crown healthy with green leaves
#
# df_annotation <- subset(df_annotation, dd2 > -1 ) # select only records where
# # Allocasuarina crowns have been assessed for health; that is, excluding NA records
#
#
# mapviewOptions(basemaps = c("Esri.WorldImagery"),
# vector.palette = colorRampPalette(c("red","orange", "yellow", "green")),
# layers.control.pos = "topright")
#
#
# mapview(df_annotation, zcol = "dd2 ", na.rm = TRUE)
#
## ----echo=TRUE, eval=FALSE, results='hold', warning=FALSE, include=TRUE-------
# #read in the species data file#
#
# species_data <- read_csv("Calibration_species.csv", show_col_types = FALSE)
#
# # confirm that there are 79 plots of species data
# cat("The number of rows in the dataframe is", nrow(species_data), "\n")
#
#
# # now determine the relationship between plot-level species counts in the field survey versus camera survey counts. abline adds a linear model to the plot #
#
# plot(species_data$No_Field_species, species_data$No_Camera_species,
# main = "Plot-level species richness",
# xlab = "No. of species (Field Survey)",
# ylab = "No. of species (Camera Survey)",
# pch = 16, # Use filled circles as data points
# col = "black", # Set point color
# ylim = c(0, 8), # Set y-axis limits
# xlim = c(0, 8)) # Set x-axis limits
# abline(lm(No_Camera_species ~ No_Field_species, data = species_data), col = "red")
#
# # view the linear model statistics #
# model <- lm(No_Camera_species ~ No_Field_species, data = species_data)
#
# model_summary <- summary(model)
# print(model_summary)
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.