knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7 )
library(parallelPlot)
factor
type)parallelPlot(iris)
'species' column is of factor type and has box representation for its categories.
refColumnDim
argument (referenced column is categorical)parallelPlot(iris, refColumnDim = "Species")
Each trace has a color depending of its 'species' value.
categoricalCS
argumentparallelPlot(iris, refColumnDim = "Species", categoricalCS = "Set1")
Colors used for categories are not the same as previously
(supported values: Category10
, Accent
, Dark2
, Paired
, Set1
).
refColumnDim
argument (referenced column is continuous)parallelPlot(iris, refColumnDim = "Sepal.Length")
Each trace has a color depending of its 'Sepal.Length' value.
continuousCS
argumentparallelPlot(iris, refColumnDim = "Sepal.Length", continuousCS = "YlOrRd")
Colors used for lines are not the same as previously. Supported values: Viridis
, Inferno
, Magma
, Plasma
, Warm
, Cool
, Rainbow
, CubehelixDefault
, Blues
, Greens
, Greys
, Oranges
, Purples
, Reds
, BuGn
, BuPu
, GnBu
, OrRd
, PuBuGn
, PuBu
, PuRd
, RdBu
, RdPu
, YlGnBu
, YlGn
, YlOrBr
, YlOrRd
factor
type)parallelPlot(mtcars)
Several columns are of numerical type but should be of factor type (for example cyl
).
categorical
argumentcategorical <- list(cyl = c(4, 6, 8), vs = c(0, 1), am = c(0, 1), gear = 3:5, carb = 1:8) parallelPlot(mtcars, categorical = categorical, refColumnDim = "cyl")
cyl
and four last columns have a box representation for categories.
categoriesRep
argumentcategorical <- list(cyl = c(4, 6, 8), vs = c(0, 1), am = c(0, 1), gear = 3:5, carb = 1:8) parallelPlot( mtcars, categorical = categorical, refColumnDim = "cyl", categoriesRep = "EquallySizedBoxes" )
Within a category column, the height assigned to each category can either be equal for each category (EquallySizedBoxes
) or calculated to reflect the proportion of lines passing through each category (EquallySpacedLines
).
arrangeMethod
argumentcategorical <- list(cyl = c(4, 6, 8), vs = c(0, 1), am = c(0, 1), gear = 3:5, carb = 1:8) parallelPlot( mtcars, categorical = categorical, refColumnDim = "cyl", arrangeMethod = "fromLeft" )
Within a category box, the position of lines is computed to minimize crossings on the left of the box. arrangeMethod
can also be set to fromRight
to minimize crossings on the left of the box (default behavior). fromBoth
allows to merge the two behaviors (see next example). To turn this ordering off (for example for performance reasons), arrangeMethod
can also be set to fromNone
.
arrangeMethod
argument (using fromBoth
)categorical <- list(cyl = c(4, 6, 8), vs = c(0, 1), am = c(0, 1), gear = 3:5, carb = 1:8) parallelPlot( mtcars, categorical = categorical, refColumnDim = "cyl", arrangeMethod = "fromBoth" )
Within a category box, lines have an incoming point and an outgoing point; these points are ordered to minimize crossings on the left and on the right of the box.
inputColumns
argumentcategorical <- list(cyl = c(4, 6, 8), vs = c(0, 1), am = c(0, 1), gear = 3:5, carb = 1:8) inputColumns <- c("mpg", "disp", "drat", "qsec", "am", "gear", "carb") parallelPlot( mtcars, categorical = categorical, inputColumns = inputColumns, refColumnDim = "cyl" )
The column name is blue for outputs and green for inputs (in shiny mode, inputs can be edited).
histoVisibility
argumenthistoVisibility <- rep(TRUE, ncol(iris)) parallelPlot(iris, histoVisibility = histoVisibility)
An histogram is displayed for each column.
invertedAxes
argumentinvertedAxes <- c("Sepal.Width") parallelPlot(iris, invertedAxes = invertedAxes)
Axis of second column is inverted (a sign '↓' is added at the beginning of the column header).
cutoffs
argumenthistoVisibility <- names(iris) # same as `rep(TRUE, ncol(iris))` cutoffs <- list(Sepal.Length = list(c(6, 7)), Species = c("virginica", "setosa")) parallelPlot(iris, histoVisibility = histoVisibility, cutoffs = cutoffs)
Lines which are not kept by cutoffs are shaded; an histogram for each column is displayed considering only kept lines.
refRowIndex
argumentparallelPlot(iris, refRowIndex = 1)
Axes are shifted vertically in such a way that first trace of the dataset looks horizontal.
rotateTitle
argumentparallelPlot(iris, refColumnDim = "Species", rotateTitle = TRUE)
Column names are rotated (can be useful for long column names).
columnLabels
argumentcolumnLabels <- gsub("\\.", "<br>", colnames(iris)) parallelPlot(iris, refColumnDim = "Species", columnLabels = columnLabels)
Given names are displayed in place of column names found in dataset; <br>
is used to insert line breaks.
cssRules
argumentparallelPlot(iris, cssRules = list( "svg" = "background: #C2C2C2", # Set background of plot to grey ".axisLabel" = c("fill: red", "font-size: 1.8em"), # Set title of axes red and greater ".tick text" = "font-size: 1.8em", # Set text of axes ticks greater ".plotGroup path" = "opacity: 0.25", # Make lines less opaque ".xValue" = "color: orange", # Set color for x values in tooltip ".xName" = "display: table" # Trick to have x values on a new line ))
Apply CSS to the plot. CSS is a simple way to describe how elements on a web page should be displayed (position, color, size, etc.). See the page Styling 'parallelPlot' for more details.
sliderPosition
argumentparallelPlot(iris, sliderPosition = list( dimCount = 3, # Number of columns to show startingDimIndex = 2 # Index of first shown column ))
Visible columns starts at second column and three columns are represented.
controlWidgets
argumentparallelPlot(iris, refColumnDim = "Species", controlWidgets = TRUE, height = 350)
Widgets are added above the graph, allowing to modify some of its attributes.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.