Description Details Author(s) See Also Examples

By sampling your data, running the Support-Vector-Machine algorithm on these samples in parallel on your own machine and letting your models vote on a prediction, we return much faster predictions than the regular Support-Vector-Machine and possibly even more accurate predictions.

Package: | parallelSVM |

Type: | Package |

Version: | 1.0 |

Date: | 2015-02-09 |

License: | GPL-2 |

This package consists of two main functions:
`parallelSVM`

A function which allows you to create multiple Support-Vector-Machine models: one for each core you provide. It returns a list of Support-Vector-Machine models.
predict: An extension of the predict function, which uses the prediction of each Support-Vector-Machine model. When probability is TRUE, it returns the average of all predictions, otherwise it returns the class most models agree upon.

Wannes Rosiers

Maintainer: Wannes Rosiers <wannes.rosiers@infofarm.be>

This package can be regarded as a parallel extension of `svm`

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.