| select.parfm | R Documentation | 
The function select.parfm() computes the AIC and BIC values
of parametric frailty models with different baseline hazards and different frailty distributions.
select.parfm(formula, cluster=NULL, strata=NULL, data, inip=NULL, iniFpar=NULL,
             dist=c("exponential", "weibull", "inweibull", "frechet", "gompertz", 
                    "loglogistic", "lognormal", "logskewnormal"),
             frailty=c("none", "gamma", "ingau", "possta", "lognormal"),
             method="BFGS", maxit=500, Fparscale=1, correct=0)
| formula | A  | 
| cluster | The name of a cluster variable in data. | 
| strata | The name of a strata variable in data. | 
| data | A  | 
| inip | The vector of initial values. First components are for the baseline hazard parameters according to the order given in 'details'; Other components are for the regression parameters according to the order given in 'formula'. | 
| iniFpar | The initial value of the frailty parameter. | 
| dist | The vector of baseline hazards' names.
It can include any of  | 
| frailty | The vector of  frailty distributions' names.
It can include any of:  | 
| method | The optimisation method from the function  | 
| maxit | Maximum number of iterations (see  | 
| Fparscale | the scaling value for the frailty parameter in  | 
| correct | A correction factor that does not change the marginal log-likelihood except for an additive constant given by #clusters * correct * log(10). It may be useful in order to get finite log-likelihood values in case of many events per cluster with Positive Stable frailties. Note that the value of the log-likelihood in the output is the re-adjusted value. | 
An object of class select.parfm.
Federico Rotolo [aut, cre], Marco Munda [aut], Andrea Callegaro [ctb]
Munda M, Rotolo F, Legrand C (2012). parfm: Parametric Frailty Models in R. Journal of Statistical Software, 51(11), 1-20. DOI <\Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v051.i11")}>
parfm,
ci.parfm,
predict.parfm
data(kidney)
kidney$sex <- kidney$sex - 1
models <- select.parfm(Surv(time,status) ~ sex + age, 
                       dist = c("exponential", 
                                "weibull",
                                "inweibull",
                                "loglogistic", 
                                "lognormal", 
                                "logskewnormal"),
                       frailty = c("gamma", 
                                   "ingau", 
                                   "possta", 
                                   "lognormal"),
                       cluster = "id", data = kidney)
models
plot(models)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.