Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
warning = FALSE,
collapse = TRUE,
comment = "#>",
fig.width = 8,
fig.height = 6
)
## ----message=FALSE------------------------------------------------------------
library(patterncausality)
data(DJS)
#head(DJS)
## ----eval=FALSE---------------------------------------------------------------
# dataset <- DJS[,-1] # remove the date column
# params <- optimalParametersSearch(
# Emax = 3,
# tauMax = 3,
# metric = "euclidean",
# dataset = dataset,
# verbose = FALSE
# )
# print(params)
## ----eval=FALSE---------------------------------------------------------------
# result <- pcMatrix(
# dataset = dataset,
# E = 3, # Embedding dimension
# tau = 1, # Time delay
# metric = "euclidean",
# h = 1, # Prediction horizon
# weighted = FALSE # Unweighted analysis
# )
## ----echo=FALSE---------------------------------------------------------------
result <- readRDS("DJSm.rds")
result$is_square <- TRUE
## -----------------------------------------------------------------------------
print(result)
## -----------------------------------------------------------------------------
plot(result, "positive")
## -----------------------------------------------------------------------------
plot(result, "negative")
## -----------------------------------------------------------------------------
plot(result, "dark")
## -----------------------------------------------------------------------------
effects <- pcEffect(result)
print(effects)
## -----------------------------------------------------------------------------
plot(effects, status="positive")
## -----------------------------------------------------------------------------
plot(effects, status="negative")
## -----------------------------------------------------------------------------
plot(effects, status="dark")
## -----------------------------------------------------------------------------
dataset <- DJS[, -1]
X <- dataset[, 1:10]
Y <- dataset[, 11:29]
## ----echo=FALSE---------------------------------------------------------------
result_cross <- readRDS("djscross.rds")
## ----eval=FALSE---------------------------------------------------------------
# result_cross <- pcCrossMatrix(
# X = X,
# Y = Y,
# E = 3,
# tau = 1,
# metric = "euclidean",
# h = 1,
# weighted = FALSE,
# verbose = FALSE
# )
## -----------------------------------------------------------------------------
plot(result_cross, "positive")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.