pbapply | R Documentation |
Adding progress bar to *apply
functions, possibly leveraging
parallel processing.
pblapply(X, FUN, ..., cl = NULL)
pbeapply(env, FUN, ..., all.names = FALSE, USE.NAMES = TRUE, cl = NULL)
pbwalk(X, FUN, ..., cl = NULL)
pbapply(X, MARGIN, FUN, ..., simplify = TRUE, cl = NULL)
pbsapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE, cl = NULL)
pbvapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE, cl = NULL)
pbreplicate(n, expr, simplify = "array", cl = NULL)
.pb_env
pbmapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
pb.mapply(FUN, dots, MoreArgs)
pbMap(f, ...)
pbtapply(X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE, cl = NULL)
pbby(data, INDICES, FUN, ..., simplify = TRUE, cl = NULL)
X |
For |
MARGIN |
A vector giving the subscripts which the function will be applied over.
|
FUN, f |
The function to be applied to each element of |
... |
Optional arguments to |
dots |
List of arguments to vectorize over (vectors or lists
of strictly positive length, or all of zero length);
see |
env |
Environment to be used. |
FUN.VALUE |
A (generalized) vector; a template for the return value from |
simplify, SIMPLIFY |
Logical; should the result be simplified to a vector or matrix if possible?
|
USE.NAMES |
Logical; if |
all.names |
Logical, indicating whether to apply the function to all values. |
n |
Number of replications. |
expr |
Expression (language object, usually a call) to evaluate repeatedly. |
cl |
A cluster object created by |
MoreArgs |
A list of other arguments to |
INDEX |
A |
INDICES |
A factor or a list of factors, each of length |
data |
An R object, normally a data frame, possibly a matrix. |
default |
Only in the case of simplification to an array, the value with which the array
is initialized as |
The behavior of the progress bar is controlled by the option
type
in pboptions
,
it can take values c("txt", "win", "tk", "none",)
on Windows,
and c("txt", "tk", "none",)
on Unix systems.
Other options have elements that are arguments used in the functions
timerProgressBar
, txtProgressBar
,
and tkProgressBar
.
See pboptions
for how to conveniently set these.
Parallel processing can be enabled through the cl
argument.
parLapply
is called when cl
is a 'cluster' object,
mclapply
is called when cl
is an integer.
Showing the progress bar increases the communication overhead
between the main process and nodes / child processes compared to the
parallel equivalents of the functions without the progress bar.
The functions fall back to their original equivalents when the progress bar is
disabled (i.e. getOption("pboptions")$type == "none"
or dopb()
is
FALSE
). This is the default when interactive()
if FALSE
(i.e. called from command line R script).
When doing parallel processing, other objects might need to pushed to the workers, and random numbers must be handled with care (see Examples).
Updating the progress bar with mclapply
can be slightly slower compared to using a Fork cluster
(i.e. calling makeForkCluster
).
Care must be taken to set appropriate random numbers in this case.
Note the use_lb
option (see pboptions
)
for using load balancing when running in parallel clusters.
If using mclapply
, the ...
passes
arguments to the underlying function for further control.
pbwalk
is similar to pblapply
but it calls FUN
only for its side-effect and returns the input X
invisibly
(this behavior is modeled after 'purrr::walk').
Note that when cl = "future"
, you might have to specify the
future.seed
argument (passed as part of ...
) when
using random numbers in parallel.
Note also that if your code prints messages or you encounter warnings during execution, the condition messages might cause the progress bar to break up and continue on a new line.
Similar to the value returned by the standard *apply
functions.
A progress bar is showed as a side effect.
Progress bar can add an overhead to the computation.
Peter Solymos <solymos@ualberta.ca>
Progress bars used in the functions:
txtProgressBar
,
tkProgressBar
,
timerProgressBar
Sequential *apply
functions:
apply
, sapply
,
lapply
, replicate
,
mapply
, .mapply
,
tapply
Parallel *apply
functions from package 'parallel':
parLapply
,
mclapply
.
Setting the options: pboptions
Conveniently add progress bar to for
-like loops:
startpb
, setpb
, getpb
,
closepb
## --- simple linear model simulation ---
set.seed(1234)
n <- 200
x <- rnorm(n)
y <- rnorm(n, crossprod(t(model.matrix(~ x)), c(0, 1)), sd = 0.5)
d <- data.frame(y, x)
## model fitting and bootstrap
mod <- lm(y ~ x, d)
ndat <- model.frame(mod)
B <- 100
bid <- sapply(1:B, function(i) sample(nrow(ndat), nrow(ndat), TRUE))
fun <- function(z) {
if (missing(z))
z <- sample(nrow(ndat), nrow(ndat), TRUE)
coef(lm(mod$call$formula, data=ndat[z,]))
}
## standard '*apply' functions
system.time(res1 <- lapply(1:B, function(i) fun(bid[,i])))
system.time(res2 <- sapply(1:B, function(i) fun(bid[,i])))
system.time(res3 <- apply(bid, 2, fun))
system.time(res4 <- replicate(B, fun()))
## 'pb*apply' functions
## try different settings:
## "none", "txt", "tk", "win", "timer"
op <- pboptions(type = "timer") # default
system.time(res1pb <- pblapply(1:B, function(i) fun(bid[,i])))
pboptions(op)
pboptions(type = "txt")
system.time(res2pb <- pbsapply(1:B, function(i) fun(bid[,i])))
pboptions(op)
pboptions(type = "txt", style = 1, char = "=")
system.time(res3pb <- pbapply(bid, 2, fun))
pboptions(op)
pboptions(type = "txt", char = ":")
system.time(res4pb <- pbreplicate(B, fun()))
pboptions(op)
## Not run:
## parallel evaluation using the parallel package
## (n = 2000 and B = 1000 will give visible timing differences)
library(parallel)
cl <- makeCluster(2L)
clusterExport(cl, c("fun", "mod", "ndat", "bid"))
## parallel with no progress bar: snow type cluster
## (RNG is set in the main process to define the object bid)
system.time(res1cl <- parLapply(cl = cl, 1:B, function(i) fun(bid[,i])))
system.time(res2cl <- parSapply(cl = cl, 1:B, function(i) fun(bid[,i])))
system.time(res3cl <- parApply(cl, bid, 2, fun))
## parallel with progress bar: snow type cluster
## (RNG is set in the main process to define the object bid)
system.time(res1pbcl <- pblapply(1:B, function(i) fun(bid[,i]), cl = cl))
system.time(res2pbcl <- pbsapply(1:B, function(i) fun(bid[,i]), cl = cl))
## (RNG needs to be set when not using bid)
parallel::clusterSetRNGStream(cl, iseed = 0L)
system.time(res4pbcl <- pbreplicate(B, fun(), cl = cl))
system.time(res3pbcl <- pbapply(bid, 2, fun, cl = cl))
stopCluster(cl)
if (.Platform$OS.type != "windows") {
## parallel with no progress bar: multicore type forking
## (mc.set.seed = TRUE in parallel::mclapply by default)
system.time(res2mc <- mclapply(1:B, function(i) fun(bid[,i]), mc.cores = 2L))
## parallel with progress bar: multicore type forking
## (mc.set.seed = TRUE in parallel::mclapply by default)
system.time(res1pbmc <- pblapply(1:B, function(i) fun(bid[,i]), cl = 2L))
system.time(res2pbmc <- pbsapply(1:B, function(i) fun(bid[,i]), cl = 2L))
system.time(res4pbmc <- pbreplicate(B, fun(), cl = 2L))
}
## End(Not run)
## --- Examples taken from standard '*apply' functions ---
## --- sapply, lapply, and replicate ---
require(stats); require(graphics)
x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
# compute the list mean for each list element
pblapply(x, mean)
pbwalk(x, mean)
# median and quartiles for each list element
pblapply(x, quantile, probs = 1:3/4)
pbsapply(x, quantile)
i39 <- sapply(3:9, seq) # list of vectors
pbsapply(i39, fivenum)
pbvapply(i39, fivenum,
c(Min. = 0, "1st Qu." = 0, Median = 0, "3rd Qu." = 0, Max. = 0))
## sapply(*, "array") -- artificial example
(v <- structure(10*(5:8), names = LETTERS[1:4]))
f2 <- function(x, y) outer(rep(x, length.out = 3), y)
(a2 <- pbsapply(v, f2, y = 2*(1:5), simplify = "array"))
a.2 <- pbvapply(v, f2, outer(1:3, 1:5), y = 2*(1:5))
stopifnot(dim(a2) == c(3,5,4), all.equal(a2, a.2),
identical(dimnames(a2), list(NULL,NULL,LETTERS[1:4])))
summary(pbreplicate(100, mean(rexp(10))))
## use of replicate() with parameters:
foo <- function(x = 1, y = 2) c(x, y)
# does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) pbreplicate(n, foo(x = x))
bar(5, x = 3)
## --- apply ---
## Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
pbapply(x, 2, mean, trim = .2)
col.sums <- pbapply(x, 2, sum)
row.sums <- pbapply(x, 1, sum)
rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))
stopifnot( pbapply(x, 2, is.vector))
## Sort the columns of a matrix
pbapply(x, 2, sort)
## keeping named dimnames
names(dimnames(x)) <- c("row", "col")
x3 <- array(x, dim = c(dim(x),3),
dimnames = c(dimnames(x), list(C = paste0("cop.",1:3))))
identical(x, pbapply( x, 2, identity))
identical(x3, pbapply(x3, 2:3, identity))
##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))
pbapply(x, 1, cave, c1 = "x1", c2 = c("x1","x2"))
ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
ma
pbapply(ma, 1, table) #--> a list of length 2
pbapply(ma, 1, stats::quantile) # 5 x n matrix with rownames
stopifnot(dim(ma) == dim(pbapply(ma, 1:2, sum)))
## Example with different lengths for each call
z <- array(1:24, dim = 2:4)
zseq <- pbapply(z, 1:2, function(x) seq_len(max(x)))
zseq ## a 2 x 3 matrix
typeof(zseq) ## list
dim(zseq) ## 2 3
zseq[1,]
pbapply(z, 3, function(x) seq_len(max(x)))
# a list without a dim attribute
## --- mapply and .mapply ---
pbmapply(rep, 1:4, 4:1)
pbmapply(rep, times = 1:4, x = 4:1)
pbmapply(rep, times = 1:4, MoreArgs = list(x = 42))
pbmapply(function(x, y) seq_len(x) + y,
c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10))
word <- function(C, k) paste(rep.int(C, k), collapse = "")
utils::str(pbmapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))
pb.mapply(rep,
dots = list(1:4, 4:1),
MoreArgs = list())
pb.mapply(rep,
dots = list(times = 1:4, x = 4:1),
MoreArgs = list())
pb.mapply(rep,
dots = list(times = 1:4),
MoreArgs = list(x = 42))
pb.mapply(function(x, y) seq_len(x) + y,
dots = list(c(a = 1, b = 2, c = 3), # names from first
c(A = 10, B = 0, C = -10)),
MoreArgs = list())
## --- Map ---
pbMap(`+`, 1, 1 : 3) ; 1 + 1:3
## --- eapply ---
env <- new.env(hash = FALSE)
env$a <- 1:10
env$beta <- exp(-3:3)
env$logic <- c(TRUE, FALSE, FALSE, TRUE)
pbeapply(env, mean)
unlist(pbeapply(env, mean, USE.NAMES = FALSE))
pbeapply(env, quantile, probs = 1:3/4)
pbeapply(env, quantile)
## --- tapply ---
require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
pbtapply(groups, groups, length) #- is almost the same as
table(groups)
## contingency table from data.frame : array with named dimnames
pbtapply(warpbreaks$breaks, warpbreaks[,-1], sum)
pbtapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)
n <- 17; fac <- factor(rep_len(1:3, n), levels = 1:5)
table(fac)
pbtapply(1:n, fac, sum)
pbtapply(1:n, fac, sum, default = 0) # maybe more desirable
pbtapply(1:n, fac, sum, simplify = FALSE)
pbtapply(1:n, fac, range)
pbtapply(1:n, fac, quantile)
pbtapply(1:n, fac, length) ## NA's
pbtapply(1:n, fac, length, default = 0) # == table(fac)
## example of ... argument: find quarterly means
pbtapply(presidents, cycle(presidents), mean, na.rm = TRUE)
ind <- list(c(1, 2, 2), c("A", "A", "B"))
table(ind)
pbtapply(1:3, ind) #-> the split vector
pbtapply(1:3, ind, sum)
## Some assertions (not held by all patch propsals):
nq <- names(quantile(1:5))
stopifnot(
identical(pbtapply(1:3, ind), c(1L, 2L, 4L)),
identical(pbtapply(1:3, ind, sum),
matrix(c(1L, 2L, NA, 3L), 2, dimnames = list(c("1", "2"), c("A", "B")))),
identical(pbtapply(1:n, fac, quantile)[-1],
array(list(`2` = structure(c(2, 5.75, 9.5, 13.25, 17), .Names = nq),
`3` = structure(c(3, 6, 9, 12, 15), .Names = nq),
`4` = NULL, `5` = NULL), dim=4, dimnames=list(as.character(2:5)))))
## --- by ---
pbby(warpbreaks[, 1:2], warpbreaks[,"tension"], summary)
pbby(warpbreaks[, 1], warpbreaks[, -1], summary)
pbby(warpbreaks, warpbreaks[,"tension"],
function(x) lm(breaks ~ wool, data = x))
tmp <- with(warpbreaks,
pbby(warpbreaks, tension,
function(x) lm(breaks ~ wool, data = x)))
sapply(tmp, coef)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.