pedmod_opt | R Documentation |
Optimizes eval_pedigree_ll
and eval_pedigree_grad
using a passed optimization function.
pedmod_opt( ptr, par, maxvls, abs_eps, rel_eps, opt_func = NULL, seed = 1L, indices = NULL, minvls = -1L, do_reorder = TRUE, use_aprx = FALSE, n_threads = 1L, cluster_weights = NULL, fix = NULL, standardized = FALSE, method = 0L, use_tilting = FALSE, vls_scales = NULL, ... ) pedmod_start( ptr, data, maxvls = 1000L, abs_eps = 0, rel_eps = 0.01, seed = 1L, indices = NULL, scale_max = 9, minvls = 100L, do_reorder = TRUE, use_aprx = TRUE, n_threads = 1L, cluster_weights = NULL, standardized = FALSE, method = 0L, sc_start = NULL, use_tilting = FALSE, vls_scales = NULL ) pedmod_start_loadings( ptr, data, indices = NULL, cluster_weights = NULL, sc_start_invariant = NULL )
ptr |
object from |
par |
starting values passed to |
maxvls |
maximum number of samples in the approximation for each marginal likelihood term. |
abs_eps |
absolute convergence threshold for
|
rel_eps |
rel_eps convergence threshold for
|
opt_func |
function to perform minimization with arguments like
|
seed |
seed to pass to |
indices |
zero-based vector with indices of which log marginal
likelihood terms to include. Use |
minvls |
minimum number of samples for each marginal likelihood term. Negative values provides a default which depends on the dimension of the integration. |
do_reorder |
|
use_aprx |
|
n_threads |
number of threads to use. |
cluster_weights |
numeric vector with weights for each cluster. Use
|
fix |
integer vector with indices of |
standardized |
logical for whether to use the standardized or direct
parameterization. See |
method |
integer with the method to use. Zero yields randomized Korobov lattice rules while one yields scrambled Sobol sequences. |
use_tilting |
|
vls_scales |
can be a numeric vector with a positive scalar for each
cluster. Then |
... |
Arguments passed to |
data |
the |
scale_max |
the maximum value for the scale parameters. Sometimes, the optimization method tends to find large scale parameters and get stuck. Setting a maximum solves this. |
sc_start |
starting value for the scale parameters. Use |
sc_start_invariant |
scale parameter(s) like sc_start. It is the value that all individuals should have (i.e. not one that varies by individual). |
pedmod_start
and pedmod_start_loadings
yield starting values which can be used for
pedmod_opt
. The methods are based on a heuristics.
pedmod_opt
: The output from the opt_func
argument. Thus, if
fix
is supplied then this is optimal values of only par[-fix]
with
par[fix]
being fixed to the inputs. Thus, the length is only the
number of non-fixed parameters.
pedmod_start
: A list
with:
par: the starting value.
beta_no_rng: the fixed effects MLEs without random effects.
logLik_no_rng: the log maximum likelihood without random effects.
logLik_est: the likelihood at par.
pedmod_start_loadings
: A list
with:
par: the starting value.
beta_no_rng: the fixed effects MLEs without random effects.
logLik_no_rng: the log maximum likelihood without random effects.
pedmod_sqn
.
# we simulate outcomes with an additive genetic effect. The kinship matrix is # the same for all families and given by K <- matrix(c( 0.5 , 0 , 0.25 , 0 , 0.25 , 0 , 0.125 , 0.125 , 0.125 , 0.125 , 0 , 0.5 , 0.25 , 0 , 0.25 , 0 , 0.125 , 0.125 , 0.125 , 0.125 , 0.25 , 0.25 , 0.5 , 0 , 0.25 , 0 , 0.25 , 0.25 , 0.125 , 0.125 , 0 , 0 , 0 , 0.5 , 0 , 0 , 0.25 , 0.25 , 0 , 0 , 0.25 , 0.25 , 0.25 , 0 , 0.5 , 0 , 0.125 , 0.125 , 0.25 , 0.25 , 0 , 0 , 0 , 0 , 0 , 0.5 , 0 , 0 , 0.25 , 0.25 , 0.125, 0.125, 0.25 , 0.25, 0.125, 0 , 0.5 , 0.25 , 0.0625, 0.0625, 0.125, 0.125, 0.25 , 0.25, 0.125, 0 , 0.25 , 0.5 , 0.0625, 0.0625, 0.125, 0.125, 0.125, 0 , 0.25 , 0.25, 0.0625, 0.0625, 0.5 , 0.25 , 0.125, 0.125, 0.125, 0 , 0.25 , 0.25, 0.0625, 0.0625, 0.25 , 0.5 ), 10) # simulates a data set. # # Args: # n_fams: number of families. # beta: the fixed effect coefficients. # sig_sq: the scale parameter. sim_dat <- function(n_fams, beta = c(-1, 1, 2), sig_sq = 3){ # setup before the simulations Cmat <- 2 * K n_obs <- NROW(K) Sig <- diag(n_obs) + sig_sq * Cmat Sig_chol <- chol(Sig) # simulate the data out <- replicate( n_fams, { # simulate covariates X <- cbind(`(Intercept)` = 1, Continuous = rnorm(n_obs), Binary = runif(n_obs) > .5) # assign the linear predictor + noise eta <- drop(X %*% beta) + drop(rnorm(n_obs) %*% Sig_chol) # return the list in the format needed for the package list(y = as.numeric(eta > 0), X = X, scale_mats = list(Cmat)) }, simplify = FALSE) # add attributes with the true values and return attributes(out) <- list(beta = beta, sig_sq = sig_sq) out } # simulate the data set.seed(1) dat <- sim_dat(100L) # fit the model ptr <- pedigree_ll_terms(dat, max_threads = 1L) start <- pedmod_start(ptr = ptr, data = dat, n_threads = 1L) fit <- pedmod_opt(ptr = ptr, par = start$par, n_threads = 1L, use_aprx = TRUE, maxvls = 5000L, minvls = 1000L, abs_eps = 0, rel_eps = 1e-3) fit$par # the estimate -fit$value # the log maximum likelihood start$logLik_no_rng # the log maximum likelihood without the random effects
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.