modelSelectionR: Exact model selection function

Description Usage Arguments Value Author(s) Examples

Description

Given loss.vec L_i, model.complexity K_i, the model selection function i*(lambda) = argmin_i L_i + lambda*K_i, compute all of the solutions (i, min.lambda, max.lambda) with i being the solution for every lambda in (min.lambda, max.lambda). This function uses the quadratic time algorithm implemented in R code. This function is mostly meant for internal use and comparison – it is instead recommended to use modelSelection.

Usage

1
2
3
modelSelectionR(loss.vec, 
    model.complexity, 
    model.id)

Arguments

loss.vec

numeric vector: loss L_i

model.complexity

numeric vector: model complexity K_i

model.id

vector: indices i

Value

data.frame with a row for each model that can be selected for at least one lambda value, and the following columns. (min.lambda, max.lambda) and (min.log.lambda, max.log.lambda) are intervals of optimal penalty constants, on the original and log scale; model.complexity are the K_i values; model.id are the model identifiers (also used for row names); and model.loss are the C_i values.

Author(s)

Toby Dylan Hocking

Examples

1
2
3
4
5
6
loss.vec <- c(
  -9.9, -12.8, -19.2, -22.1, -24.5, -26.1, -28.5, -30.1, -32.2, 
  -33.7, -35.2, -36.8, -38.2, -39.5, -40.7, -41.8, -42.8, -43.9, 
  -44.9, -45.8)
seg.vec <- seq_along(loss.vec)
penaltyLearning::modelSelectionR(loss.vec, seg.vec, seg.vec)

penaltyLearning documentation built on July 1, 2020, 10:26 p.m.