Nothing
#' penfa: Single- and Multiple-Group Penalized Factor Analysis
#'
#' The \code{penfa} package (a short form for *PENalized Factor Analysis*) provides
#' several routines for single- and multiple-group penalized factor analysis for
#' continuous data. The models are estimated via a trust-region algorithm with
#' integrated automatic multiple tuning parameter selection. The available
#' penalties include lasso, adaptive lasso, scad, mcp, and ridge. \cr\cr
#' The main function of the package is \code{\link{penfa}}. To learn more about
#' it, start with the vignettes and tutorials at \code{browseVignettes(package = "penfa")} and
#' [https://egeminiani.github.io/penfa/articles/](https://egeminiani.github.io/penfa/articles/).
#'
#'
#' @details
#'
#' Penalized factor analysis allows to produce parsimonious models using largely
#' an automated procedure. In the single-group case, a typical penalty function
#' will automatically shrink a subset of the factor loadings to zero. The use of
#' sparsity-inducing penalty functions leads to optimally sparse factor
#' structures supported by the data. The resulting models are less prone to
#' instability in the estimation process and are easier to interpret and
#' generalize than their unpenalized counterparts.
#'
#' In the multiple-group scenario, penalized factor analysis can be used to
#' automatically ascertain differences and similarities of parameter
#' estimates across groups. Typical penalties will automatically encourage
#' sparse loading matrices and invariant factor loadings and intercepts.
#'
#' In \code{penfa}, estimation is achieved via a penalized likelihood-based
#' framework that builds upon differentiable approximations of
#' non-differentiable penalties, a theoretically founded definition of degrees
#' of freedom, and an algorithm with integrated automatic multiple tuning
#' parameter selection. The estimation is based on a trust-region algorithm
#' approach exploiting second-order analytical derivative information. The
#' standard errors for the model parameters are derived using a Bayesian
#' approach.
#'
#' The selection of the tuning parameters is a crucial issue in penalized
#' estimation strategies, as the tuning parameters are responsible for the
#' optimal balance between goodness of fit and sparsity. In \code{penfa}, the
#' optimal values of the tuning parameters can be determined through the
#' automatic procedure or grid-searches.
#'
#' In addition to the fitting function \code{\link{penfa}}, the package provides
#' several methods for examining the parameter estimates, monitoring
#' the optimization process, and inspecting the structures of the penalty
#' matrices through interactive visualizations.
#'
#'
#' @author
#'
#' Authors: Elena Geminiani, Giampiero Marra, Irini Moustaki
#'
#' Maintainer: Elena Geminiani. Please address any query or comment to
#' \email{geminianielena@@gmail.com}.
#'
#'
#'
#' @references
#'
#' Geminiani, E., Marra, G., & Moustaki, I. (2021). "Single- and Multiple-Group
#' Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated
#' Automatic Multiple Tuning Parameter Selection." Psychometrika, 86(1), 65-95.
#' \doi{10.1007/s11336-021-09751-8}
#'
#' Geminiani E. (2020), "A penalized likelihood-based framework for single and
#' multiple-group factor analysis models" (Doctoral dissertation, University of
#' Bologna). Available at \url{http://amsdottorato.unibo.it/9355/}.
#'
#'
#' @seealso \code{\link{penfa}}, \code{\link{penfa-class}}
#'
#'
#' @docType package
#' @name penfa-package
NULL
#' @importFrom methods new is .hasSlot setClass setGeneric setRefClass setMethod
#' show
#' @importFrom stats as.formula coef complete.cases cov fitted na.omit qnorm var
#' logLik
#' @importFrom utils combn modifyList packageDescription packageVersion read.csv
#' str write.table
#' @importFrom grDevices colorRampPalette
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.