Description Usage Arguments Value Author(s) See Also Examples
Produce a summary of resampling-based prediction error results.
1 2 3 4 5 6 7 8 |
object |
an object inheriting from class |
... |
currently ignored. |
An object of class "summary.perry"
, "summary.perrySelect"
or
"summary.perryTuning"
, depending on the class of object
.
Andreas Alfons
perryFit
, perrySelect
,
perryTuning
, summary
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | library("perryExamples")
data("coleman")
set.seed(1234) # set seed for reproducibility
## set up folds for cross-validation
folds <- cvFolds(nrow(coleman), K = 5, R = 10)
## compare raw and reweighted LTS estimators for
## 50% and 75% subsets
# 50% subsets
fit50 <- ltsReg(Y ~ ., data = coleman, alpha = 0.5)
cv50 <- perry(fit50, splits = folds, fit = "both",
cost = rtmspe, trim = 0.1)
# 75% subsets
fit75 <- ltsReg(Y ~ ., data = coleman, alpha = 0.75)
cv75 <- perry(fit75, splits = folds, fit = "both",
cost = rtmspe, trim = 0.1)
# combine results into one object
cv <- perrySelect("0.5" = cv50, "0.75" = cv75)
cv
# summary of the results with the 50% subsets
summary(cv50)
# summary of the combined results
summary(cv)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.