test_info_4PL | R Documentation |
Estimate test information from logistic item response theory model.
test_info_4PL(
theta,
alpha,
beta,
gamma = rep(0, length(alpha)),
delta = rep(1, length(alpha))
)
error_variance_4PL(
lower = -Inf,
upper = Inf,
alpha,
beta,
gamma = rep(0, length(alpha)),
delta = rep(1, length(alpha)),
mean = 0,
sd = 1,
density_cutoff = 1e-10
)
reliability_4PL(
alpha,
beta,
gamma = rep(0, length(alpha)),
delta = rep(1, length(alpha))
)
theta |
Numeric. The respondent's level on the latent factor/construct. |
alpha |
Numeric. The discrimination parameter of the item,
indicating how steeply the item response changes with the person's
( |
beta |
Numeric. The difficulty parameter of the item,
indicating the expected count at a given level on the construct
( |
gamma |
Numeric. The lower asymptote. |
delta |
Numeric. The upper asymptote. |
lower |
Numeric. The lower range of theta, for estimating error variance or reliability. |
upper |
Numeric. The upper range of theta, for estimating error variance or reliability. |
mean |
Numeric. Mean of normal latent variable. |
sd |
Numeric. Standard deviation of normal latent variable. |
density_cutoff |
Numeric. Cut-off value for very large or very small bounds needed for numerical stability. |
Created by Philipp Doebler (doebler@statistik.tu-dortmund.de) and Loreen Sabel (loreen.sabel@tu-dortmund.de).
The amount of information for a given the test as a whole at each
of the values of theta
specified. Based on test information, one can
estimate error variance and marginal reliability using
error_variance_4PL()
and reliability_4PL()
, respectively.
Other IRT:
deriv_d_negBinom()
,
discriminationToFactorLoading()
,
fourPL()
,
itemInformation()
,
reliabilityIRT()
,
standardErrorIRT()
test_info_4PL(0,1,0,0,1) # 0.25
test_info_4PL(-0.849, 1.1, -1, 0.2, 0.95) # Magis, 2013, Fig. 2
optimize(function(x)- test_info_4PL(x, 1.1, -1, 0.2, 0.95), c(-3, 3))
# test
set.seed(23)
# parameters (some are totally unrealistic)
alpha <- runif(20,0.5,2.5)
beta <- runif(20,-2,2)
gamma <- runif(20,0,0.3)
delta <- runif(20,0.8,1)
error_variance_4PL(
lower = -Inf, upper = Inf,
alpha, beta, gamma, delta)
error_variance_4PL(
lower= -Inf, upper= Inf,
alpha, beta, gamma, delta,
density_cutoff = 1e-9)
error_variance_4PL(
lower= -Inf, upper= Inf,
alpha, beta, gamma, delta,
density_cutoff = 1e-8)
error_variance_4PL(
lower = -Inf, upper= Inf,
alpha, beta, gamma, delta,
density_cutoff = 1e-7)
reliability_4PL(alpha, beta, gamma, delta)
theta <- seq(-4, 4, length.out = 101)
plot(theta, test_info_4PL(theta, alpha, beta, gamma, delta))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.