Nothing
#' @title
#' Identify Variables of Different Types.
#'
#' @description
#' Identifies the variables in common across two dataframes that have different
#' types.
#'
#' @details
#' Identifies the variables that have the same name across two dataframes that
#' have different types, which can pose challenges for merging two dataframes.
#'
#' @param df1 dataframe 1 (object)
#' @param df2 dataframe 2 (object)
#'
#' @return
#' Dataframe with columns for the variable name, the variable type in \code{df1}
#' and the variable type in \code{df2}.
#'
#' @family dataManipulation
#'
#' @importFrom purrr map_chr
#' @importFrom dplyr intersect
#'
#' @export
#'
#' @examples
#' # Prepare Data
#' df1 <- data.frame(
#' A = 1:3,
#' B = 2:4,
#' C = 3:5
#' )
#'
#' df2 <- data.frame(
#' A = as.character(1:3),
#' B = 2:4,
#' C = as.factor(3:5)
#' )
#'
#' # Check if any rows are not NA
#' varsDifferentTypes(df1, df2)
varsDifferentTypes <- function(df1, df2){
# Get the data types of each column in both datasets
types_df1 <- df1 |>
purrr::map_chr(class)
types_df2 <- df2 |>
purrr::map_chr(class)
# Find common columns
common_cols <- dplyr::intersect(names(types_df1), names(types_df2))
# Compare data types of common columns
type_comparison <- data.frame(
column = common_cols,
type_df1 = types_df1[common_cols],
type_df2 = types_df2[common_cols]
)
# Filter the results for columns with different types
different_types <- type_comparison[which(
type_comparison$type_df1 != type_comparison$type_df2),]
return(different_types)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.