euclidean_distance_kernel | R Documentation |
Functions to compute a distance kernel.
euclidean_distance_kernel(vertical_radius, horizontal_radius = vertical_radius) manhattan_distance_kernel(vertical_radius, horizontal_radius = vertical_radius) minkowski_distance_kernel( p, vertical_radius, horizontal_radius = vertical_radius ) chebyshev_distance_kernel(vertical_radius, horizontal_radius = vertical_radius) vertical_distance_kernel(vertical_radius, horizontal_radius = vertical_radius) horizontal_distance_kernel( vertical_radius, horizontal_radius = vertical_radius ) distance_kernel(vertical_radius, horizontal_radius = vertical_radius)
vertical_radius |
[numeric] The kernel's radius in the vertical dimension. |
horizontal_radius |
[numeric] The kernel's radius in the horizontal dimension. |
p |
[numeric] Exponent parameter for the Minkowski distance. |
A matrix
corresponding to the kernel.
distance_kernel(vertical_radius = 2, horizontal_radius = 2) euclidean_distance_kernel(vertical_radius = 2, horizontal_radius = 2) manhattan_distance_kernel(vertical_radius = 2, horizontal_radius = 2) minkowski_distance_kernel(vertical_radius = 2, horizontal_radius = 2, p = 1) chebyshev_distance_kernel(vertical_radius = 2, horizontal_radius = 2) vertical_distance_kernel(vertical_radius = 2, horizontal_radius = 2) horizontal_distance_kernel(vertical_radius = 2, horizontal_radius = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.