phyloglm.hp | R Documentation |
Hierarchical Partitioning of R2 for Phylogenetic Generalized Linear Regression
phyloglm.hp(mod, iv = NULL, commonality = FALSE)
mod |
Fitted phylolm or phyloglm model objects. |
iv |
optional the relative importance of predicotr groups will be evaluated. The input for iv should be a list containing the names of each group of variables. The variable names must be the names of the predictor variables in mod. |
commonality |
Logical; If TRUE, the result of commonality analysis is shown, the default is FALSE. |
This function conducts hierarchical partitioning to calculate the individual contributions of phylogenetic signal and each predictor towards total R2 from rr2 package for phylogenetic linear regression.
Total.R2 |
The R2 for the full model. |
commonality.analysis |
If commonality=TRUE, a matrix containing the value and percentage of all commonality (2^N-1 for N predictors or matrices). |
Individual.R2 |
A matrix containing individual effects and percentage of individual effects for phylogenetic tree and each predictor |
Jiangshan Lai lai@njfu.edu.cn
Lai J.,Zhu W., Cui D.,Mao L.(2023)Extension of the glmm.hp package to Zero-Inflated generalized linear mixed models and multiple regression.Journal of Plant Ecology,16(6):rtad038<DOI:10.1093/jpe/rtad038>
Lai J.,Zou Y., Zhang S.,Zhang X.,Mao L.(2022)glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models.Journal of Plant Ecology,15(6):1302-1307<DOI:10.1093/jpe/rtac096>
Lai J.,Zou Y., Zhang J.,Peres-Neto P.(2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package.Methods in Ecology and Evolution,13(4):782-788<DOI:10.1111/2041-210X.13800>
Chevan, A. & Sutherland, M. (1991). Hierarchical partitioning. American Statistician, 45, 90-96. doi:10.1080/00031305.1991.10475776
Nimon, K., Oswald, F.L. & Roberts, J.K. (2013). Yhat: Interpreting regression effects. R package version 2.0.0.
Nimon, Ho, L. S. T. and Ane, C. 2014. "A linear-time algorithm for Gaussian and non-Gaussian trait evolution models". Systematic Biology 63(3):397-408.
library(phylolm)
library(rr2)
set.seed(231)
tre <- rcoal(60)
taxa <- sort(tre$tip.label)
b0 <- 0
b1 <- 0.3
b2 <- 0.5
b3 <- 0.4
x <- rTrait(n=1, phy=tre, model="lambda", parameters=list(ancestral.state=0, sigma2=15, lambda=0.9))
x2 <- rTrait(n=1, phy=tre, model="lambda",
parameters=list(ancestral.state=0, sigma2=10, lambda=0.9))
x3 <- rTrait(n=1, phy=tre, model="lambda",
parameters=list(ancestral.state=0, sigma2=13, lambda=0.9))
y <- b0 + b1 * x + b2 * x2 + b3*x3+ rTrait(n=1, phy=tre, model="lambda",
parameters=list(ancestral.state=0, sigma2=5, lambda=0.9))
dat <- data.frame(trait=y[taxa], pred=x[taxa], pred2=x2[taxa],pred3=x3[taxa])
fit <- phylolm(trait ~ pred + pred2 + pred3, data=dat, phy=tre, model="lambda")
phyloglm.hp(fit,commonality=TRUE)
iv=list(env1="pred",env2=c("pred2","pred3"))
phyloglm.hp(fit,iv)
set.seed(123456)
tre <- rtree(50)
x1 <- rTrait(n=1, phy=tre)
x2 <- rTrait(n=1, phy=tre)
x3 <- rTrait(n=1, phy=tre)
X <- cbind(rep(1, 50), x1, x2, x3)
y <- rbinTrait(n=1, phy=tre, beta=c(-1, 0.9, 0.9, 0.5), alpha=1, X=X)
dat <- data.frame(trait01=y, predictor1=x1, predictor2=x2, predictor3=x3)
fit <- phyloglm(trait01 ~ predictor1 + predictor2 + predictor3, phy=tre, data=dat)
phyloglm.hp(fit)
iv=list(env1="predictor1",env2=c("predictor2","predictor3"))
phyloglm.hp(fit,iv)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.