CQRF: implements RF prediction interval using split conformal...

Description Usage Arguments

View source: R/Romano_Patterson_Candes_2018.R

Description

This function implements split conformal prediction intervals for RFs. Currently used in rfint().

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
CQRF(
  formula = NULL,
  train_data = NULL,
  pred_data = NULL,
  num_trees = NULL,
  min_node_size = NULL,
  m_try = NULL,
  keep_inbag = TRUE,
  intervals = TRUE,
  alpha = NULL,
  forest_type = "RF",
  num_threads = NULL,
  interval_type = NULL
)

Arguments

formula

Object of class formula or character describing the model to fit. Interaction terms supported only for numerical variables.

train_data

Training data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data (GenABEL). Matches ranger() requirements.

pred_data

Test data of class data.frame, matrix, dgCMatrix (Matrix) or gwaa.data (GenABEL). Utilizes ranger::predict() to get prediction intervals for test data.

num_trees

Number of trees.

min_node_size

Minimum number of observations before split at a node.

m_try

Number of variables to randomly select from at each split.

keep_inbag

Saves matrix of observations and which tree(s) they occur in. Required to be true to generate variance estimates for Ghosal, Hooker 2018 method. *Should not be an option...

intervals

Generate prediction intervals or not.

alpha

Significance level for prediction intervals.

forest_type

Determines what type of forest: regression forest vs. quantile regression forest. *Should not be an option...

num_threads

The number of threads to use in parallel. Default is the current number of cores.

interval_type

Type of prediction interval to generate. Options are method = c("two-sided", "lower", "upper"). Default is method = "two-sided".


piRF documentation built on July 1, 2020, 7:51 p.m.

Related to CQRF in piRF...