tests/testthat/_snaps/tbl-format.md

format() reacts on cli.num_colors option

Code
  format(as_tbl(trees))
Output
   [1] "\033[90m# A data frame: 31 x 3\033[39m"                                                                             
   [2] "   Girth Height Volume"                                                                                             
   [3] "   \033[3m\033[90m<dbl>\033[39m\033[23m  \033[3m\033[90m<dbl>\033[39m\033[23m  \033[3m\033[90m<dbl>\033[39m\033[23m"
   [4] "\033[90m 1\033[39m   8.3     70   10.3"                                                                             
   [5] "\033[90m 2\033[39m   8.6     65   10.3"                                                                             
   [6] "\033[90m 3\033[39m   8.8     63   10.2"                                                                             
   [7] "\033[90m 4\033[39m  10.5     72   16.4"                                                                             
   [8] "\033[90m 5\033[39m  10.7     81   18.8"                                                                             
   [9] "\033[90m 6\033[39m  10.8     83   19.7"                                                                             
  [10] "\033[90m 7\033[39m  11       66   15.6"                                                                             
  [11] "\033[90m 8\033[39m  11       75   18.2"                                                                             
  [12] "\033[90m 9\033[39m  11.1     80   22.6"                                                                             
  [13] "\033[90m10\033[39m  11.2     75   19.9"                                                                             
  [14] "\033[90m# i 21 more rows\033[39m"                                                                                   
Code
  options(cli.num_colors = 1)
  format(as_tbl(trees))
Output
   [1] "# A data frame: 31 x 3" "   Girth Height Volume" "   <dbl>  <dbl>  <dbl>"
   [4] " 1   8.3     70   10.3" " 2   8.6     65   10.3" " 3   8.8     63   10.2"
   [7] " 4  10.5     72   16.4" " 5  10.7     81   18.8" " 6  10.8     83   19.7"
  [10] " 7  11       66   15.6" " 8  11       75   18.2" " 9  11.1     80   22.6"
  [13] "10  11.2     75   19.9" "# i 21 more rows"

print() output

Code
  as_tbl(mtcars)
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
   2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
   3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
   4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
   5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
   6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
   7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
   8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
   9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
  10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
  # i 22 more rows
Code
  print(as_tbl(mtcars), n = 8, width = 30)
Output
  # A data frame: 32 x 11
      mpg   cyl  disp    hp
  * <dbl> <dbl> <dbl> <dbl>
  1  21       6  160    110
  2  21       6  160    110
  3  22.8     4  108     93
  4  21.4     6  258    110
  5  18.7     8  360    175
  6  18.1     6  225    105
  7  14.3     8  360    245
  8  24.4     4  147.    62
  # i 24 more rows
  # i 7 more variables:
  #   drat <dbl>, wt <dbl>,
  #   qsec <dbl>, vs <dbl>,
  #   am <dbl>, gear <dbl>,
  #   carb <dbl>
Code
  print(as_tbl(mtcars), n = 30)
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6 160     110  3.9   2.62  16.5     0     1     4     4
   2  21       6 160     110  3.9   2.88  17.0     0     1     4     4
   3  22.8     4 108      93  3.85  2.32  18.6     1     1     4     1
   4  21.4     6 258     110  3.08  3.22  19.4     1     0     3     1
   5  18.7     8 360     175  3.15  3.44  17.0     0     0     3     2
   6  18.1     6 225     105  2.76  3.46  20.2     1     0     3     1
   7  14.3     8 360     245  3.21  3.57  15.8     0     0     3     4
   8  24.4     4 147.     62  3.69  3.19  20       1     0     4     2
   9  22.8     4 141.     95  3.92  3.15  22.9     1     0     4     2
  10  19.2     6 168.    123  3.92  3.44  18.3     1     0     4     4
  11  17.8     6 168.    123  3.92  3.44  18.9     1     0     4     4
  12  16.4     8 276.    180  3.07  4.07  17.4     0     0     3     3
  13  17.3     8 276.    180  3.07  3.73  17.6     0     0     3     3
  14  15.2     8 276.    180  3.07  3.78  18       0     0     3     3
  15  10.4     8 472     205  2.93  5.25  18.0     0     0     3     4
  16  10.4     8 460     215  3     5.42  17.8     0     0     3     4
  17  14.7     8 440     230  3.23  5.34  17.4     0     0     3     4
  18  32.4     4  78.7    66  4.08  2.2   19.5     1     1     4     1
  19  30.4     4  75.7    52  4.93  1.62  18.5     1     1     4     2
  20  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
  21  21.5     4 120.     97  3.7   2.46  20.0     1     0     3     1
  22  15.5     8 318     150  2.76  3.52  16.9     0     0     3     2
  23  15.2     8 304     150  3.15  3.44  17.3     0     0     3     2
  24  13.3     8 350     245  3.73  3.84  15.4     0     0     3     4
  25  19.2     8 400     175  3.08  3.84  17.0     0     0     3     2
  26  27.3     4  79      66  4.08  1.94  18.9     1     1     4     1
  27  26       4 120.     91  4.43  2.14  16.7     0     1     5     2
  28  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2
  29  15.8     8 351     264  4.22  3.17  14.5     0     1     5     4
  30  19.7     6 145     175  3.62  2.77  15.5     0     1     5     6
  # i 2 more rows
Code
  print(as_tbl(mtcars), n = 100)
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6 160     110  3.9   2.62  16.5     0     1     4     4
   2  21       6 160     110  3.9   2.88  17.0     0     1     4     4
   3  22.8     4 108      93  3.85  2.32  18.6     1     1     4     1
   4  21.4     6 258     110  3.08  3.22  19.4     1     0     3     1
   5  18.7     8 360     175  3.15  3.44  17.0     0     0     3     2
   6  18.1     6 225     105  2.76  3.46  20.2     1     0     3     1
   7  14.3     8 360     245  3.21  3.57  15.8     0     0     3     4
   8  24.4     4 147.     62  3.69  3.19  20       1     0     4     2
   9  22.8     4 141.     95  3.92  3.15  22.9     1     0     4     2
  10  19.2     6 168.    123  3.92  3.44  18.3     1     0     4     4
  11  17.8     6 168.    123  3.92  3.44  18.9     1     0     4     4
  12  16.4     8 276.    180  3.07  4.07  17.4     0     0     3     3
  13  17.3     8 276.    180  3.07  3.73  17.6     0     0     3     3
  14  15.2     8 276.    180  3.07  3.78  18       0     0     3     3
  15  10.4     8 472     205  2.93  5.25  18.0     0     0     3     4
  16  10.4     8 460     215  3     5.42  17.8     0     0     3     4
  17  14.7     8 440     230  3.23  5.34  17.4     0     0     3     4
  18  32.4     4  78.7    66  4.08  2.2   19.5     1     1     4     1
  19  30.4     4  75.7    52  4.93  1.62  18.5     1     1     4     2
  20  33.9     4  71.1    65  4.22  1.84  19.9     1     1     4     1
  21  21.5     4 120.     97  3.7   2.46  20.0     1     0     3     1
  22  15.5     8 318     150  2.76  3.52  16.9     0     0     3     2
  23  15.2     8 304     150  3.15  3.44  17.3     0     0     3     2
  24  13.3     8 350     245  3.73  3.84  15.4     0     0     3     4
  25  19.2     8 400     175  3.08  3.84  17.0     0     0     3     2
  26  27.3     4  79      66  4.08  1.94  18.9     1     1     4     1
  27  26       4 120.     91  4.43  2.14  16.7     0     1     5     2
  28  30.4     4  95.1   113  3.77  1.51  16.9     1     1     5     2
  29  15.8     8 351     264  4.22  3.17  14.5     0     1     5     4
  30  19.7     6 145     175  3.62  2.77  15.5     0     1     5     6
  31  15       8 301     335  3.54  3.57  14.6     0     1     5     8
  32  21.4     4 121     109  4.11  2.78  18.6     1     1     4     2
Code
  print(as_tbl(mtcars), width = 40, max_extra_cols = 1)
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110  3.9   2.62
   2  21       6  160    110  3.9   2.88
   3  22.8     4  108     93  3.85  2.32
   4  21.4     6  258    110  3.08  3.22
   5  18.7     8  360    175  3.15  3.44
   6  18.1     6  225    105  2.76  3.46
   7  14.3     8  360    245  3.21  3.57
   8  24.4     4  147.    62  3.69  3.19
   9  22.8     4  141.    95  3.92  3.15
  10  19.2     6  168.   123  3.92  3.44
  # i 22 more rows
  # i 5 more variables: qsec <dbl>, ...
Code
  print(as_tbl(mtcars), width = 30, max_footer_lines = 3)
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp
   * <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110
   2  21       6  160    110
   3  22.8     4  108     93
   4  21.4     6  258    110
   5  18.7     8  360    175
   6  18.1     6  225    105
   7  14.3     8  360    245
   8  24.4     4  147.    62
   9  22.8     4  141.    95
  10  19.2     6  168.   123
  # i 22 more rows
  # i 7 more variables:
  #   drat <dbl>, wt <dbl>, ...
Code
  rlang::with_options(tibble.print_min = 5, as_tbl(mtcars))
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
   2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
   3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
   4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
   5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
   6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
   7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
   8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
   9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
  10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
  # i 22 more rows
Code
  rlang::with_options(tibble.print_max = 50, as_tbl(mtcars))
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
   2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
   3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
   4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
   5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
   6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
   7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
   8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
   9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
  10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
  # i 22 more rows
Code
  rlang::with_options(tibble.width = 30, as_tbl(mtcars))
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
   2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
   3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
   4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
   5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
   6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
   7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
   8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
   9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
  10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
  # i 22 more rows
Code
  print(as_tbl(mtcars), width = 40, max_extra_cols = 1)
Output
  # A data frame: 32 x 11
       mpg   cyl  disp    hp  drat    wt
   * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   1  21       6  160    110  3.9   2.62
   2  21       6  160    110  3.9   2.88
   3  22.8     4  108     93  3.85  2.32
   4  21.4     6  258    110  3.08  3.22
   5  18.7     8  360    175  3.15  3.44
   6  18.1     6  225    105  2.76  3.46
   7  14.3     8  360    245  3.21  3.57
   8  24.4     4  147.    62  3.69  3.19
   9  22.8     4  141.    95  3.92  3.15
  10  19.2     6  168.   123  3.92  3.44
  # i 22 more rows
  # i 5 more variables: qsec <dbl>, ...
Code
  print(tbl_format_setup(new_tbl(trees, pillar_focus = "Volume"), width = 30))
Output
  <pillar_tbl_format_setup>
  <tbl_format_header(setup)>
  # A data frame:  31 x 3
  # Focus columns: Volume
  <tbl_format_body(setup)>
     Girth Height Volume
     <dbl>  <dbl>  <dbl>
   1   8.3     70   10.3
   2   8.6     65   10.3
   3   8.8     63   10.2
   4  10.5     72   16.4
   5  10.7     81   18.8
   6  10.8     83   19.7
   7  11       66   15.6
   8  11       75   18.2
   9  11.1     80   22.6
  10  11.2     75   19.9
  <tbl_format_footer(setup)>
  # i 21 more rows


Try the pillar package in your browser

Any scripts or data that you put into this service are public.

pillar documentation built on March 31, 2023, 10:19 p.m.