Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
## load dataset
pilot.data = readRDS(system.file("extdata", "pilotdata.rds", package = "planningML"))
dim(pilot.data)
## -----------------------------------------------------------------------------
x = pilot.data[,-ncol(pilot.data)]
y = pilot.data$DEPRESSION
## -----------------------------------------------------------------------------
head(x)
## -----------------------------------------------------------------------------
y
## -----------------------------------------------------------------------------
library(planningML)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# features = featureselection(x = x, y = y)
## ----include=FALSE------------------------------------------------------------
features = readRDS(system.file("extdata", "features.rds", package = "planningML"))
## -----------------------------------------------------------------------------
summary(features)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# output = samplesize(features=features,
# method="HCT", m=c(5,10,length(features$features)), effectsize=NULL,
# class.prob = NULL, totalnum_features = NULL, threshold=0.1, metric="MCC")
## ----include=FALSE------------------------------------------------------------
output = readRDS(system.file("extdata", "output.rds", package = "planningML"))
## -----------------------------------------------------------------------------
head(output$outtable)
## -----------------------------------------------------------------------------
summary(output)
## -----------------------------------------------------------------------------
plot(output)
## -----------------------------------------------------------------------------
effect_size = readRDS(system.file("extdata", "effectsize.rds", package = "planningML"))
effect_size
## ----warning=FALSE------------------------------------------------------------
output2 = samplesize(features = NULL,
method="HCT", m=200, effectsize=effect_size, class.prob = 0.5,
totalnum_features = 5000, threshold=0.1, metric="MCC")
## -----------------------------------------------------------------------------
summary(output2)
## -----------------------------------------------------------------------------
plot(output2)
## -----------------------------------------------------------------------------
pilotSet = readRDS(system.file("extdata", "pilotSet.rds", package = "planningML"))
pilotY = readRDS(system.file("extdata", "pilotY.rds", package = "planningML"))
## -----------------------------------------------------------------------------
dim(pilotSet)
## -----------------------------------------------------------------------------
table(pilotY)
## ----eval=FALSE, include=TRUE-------------------------------------------------
# nhamcs_rf_auc <- learningcurve_data(pilotSet, pilotY, method="rf", batchsize = 100, nfold=5, nrepeat=10, class.prob = 0.105, metric="AUC")
## ----include=FALSE------------------------------------------------------------
nhamcs_rf_auc = readRDS(system.file("extdata", "nhamcs_rf_auc.rds", package = "planningML"))
## -----------------------------------------------------------------------------
nhamcs_rf_auc
## ----warning=FALSE------------------------------------------------------------
lc_fit <- fit_learningcurve(nhamcs_rf_auc, testX=seq(10, 1500, 5), target=0.8)
## -----------------------------------------------------------------------------
plot(lc_fit)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.