knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) options(rmarkdown.html_vignette.check_title = FALSE)
library(tidyverse) library(dplyr) library(lubridate) library(tidyverse) library(shiny) # for the tables library(reactable) library(reactablefmtr) # for the charts library(highcharter) # the library planr library(planr)
Let's present the 3 functions:
light_proj_inv() : to calculate projected inventories & coverages
proj_inv() : to calculate & analyze projected inventories vs min & max targets
drp() : to calculate a replenishment plan
Period <- c( "1/1/2020", "2/1/2020", "3/1/2020", "4/1/2020", "5/1/2020", "6/1/2020", "7/1/2020", "8/1/2020", "9/1/2020", "10/1/2020", "11/1/2020", "12/1/2020","1/1/2021", "2/1/2021", "3/1/2021", "4/1/2021", "5/1/2021", "6/1/2021", "7/1/2021", "8/1/2021", "9/1/2021", "10/1/2021", "11/1/2021", "12/1/2021") Demand <- c(360, 458,300,264,140,233,229,208,260,336,295,226,336,434,276,240,116,209,205,183,235,312,270,201) Opening <- c(1310,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Supply <- c(0,0,0,0,0,2500,0,0,0,0,0,0,0,0,0,2000,0,0,0,0,0,0,0,0) # assemble my_demand_and_suppply <- data.frame(Period, Demand, Opening, Supply) # let's add a Product my_demand_and_suppply$DFU <- "Product A" # format the Period as a date my_demand_and_suppply$Period <- as.Date(as.character(my_demand_and_suppply$Period), format = '%m/%d/%Y') # let's have a look at it head(my_demand_and_suppply)
It contains some basic features:
a Product: it's an item, a SKU (Storage Keeping Unit), or a SKU at a location, also called a DFU (Demand Forecast Unit)
a Period of time : for example monthly or weekly buckets
a Demand : could be some sales forecasts, expressed in units
an Opening Inventory : what we hold as available inventories at the beginning of the horizon, expressed in units
a Supply Plan : the supplies that we plan to receive, expressed in units
Let's apply the light_proj_inv().
We are going to calculate 2 new features for each DFU:
projected inventories
projected coverages, based on the Demand Forecasts
# calculate calculated_projection <- light_proj_inv(dataset = my_demand_and_suppply, DFU = DFU, Period = Period, Demand = Demand, Opening = Opening, Supply = Supply) # see results head(calculated_projection)
We will use the libraries reactable and reactablefmtr to create a nice table.
# set a working df df1 <- calculated_projection # keep only the needed columns df1 <- df1 %>% select(Period, Demand, Calculated.Coverage.in.Periods, Projected.Inventories.Qty, Supply) # create a f_colorpal field df1 <- df1 %>% mutate(f_colorpal = case_when( Calculated.Coverage.in.Periods > 6 ~ "#FFA500", Calculated.Coverage.in.Periods > 2 ~ "#32CD32", Calculated.Coverage.in.Periods > 0 ~ "#FFFF99", TRUE ~ "#FF0000" )) # create reactable reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE, striped = TRUE, highlight = TRUE, compact = TRUE, defaultPageSize = 20, columns = list( Demand = colDef( name = "Demand (units)", cell = data_bars(df1, fill_color = "#3fc1c9", text_position = "outside-end" ) ), Calculated.Coverage.in.Periods = colDef( name = "Coverage (Periods)", maxWidth = 90, cell= color_tiles(df1, color_ref = "f_colorpal") ), f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages `Projected.Inventories.Qty`= colDef( name = "Projected Inventories (units)", format = colFormat(separators = TRUE, digits=0), style = function(value) { if (value > 0) { color <- "#008000" } else if (value < 0) { color <- "#e00000" } else { color <- "#777" } list(color = color #fontWeight = "bold" ) } ), Supply = colDef( name = "Supply (units)", cell = data_bars(df1, fill_color = "#3CB371", text_position = "outside-end" ) ) ), # close columns lits columnGroups = list( colGroup(name = "Projected Inventories", columns = c("Calculated.Coverage.in.Periods", "Projected.Inventories.Qty")) ) ) # close reactable
# set a working df df1 <- calculated_projection # keep only the needed columns df1 <- df1 %>% select(Period, Projected.Inventories.Qty) # create a value.index df1$Value.Index <- if_else(df1$Projected.Inventories.Qty < 0, "Shortage", "Stock") # spread df1 <- df1 %>% spread(Value.Index, Projected.Inventories.Qty) #---------------------------------------------------- # Chart u <- highchart() %>% hc_title(text = "Projected Inventories") %>% hc_subtitle(text = "in units") %>% hc_add_theme(hc_theme_google()) %>% hc_xAxis(categories = df1$Period) %>% hc_add_series(name = "Stock", color = "#32CD32", #dataLabels = list(align = "center", enabled = TRUE), data = df1$Stock) %>% hc_add_series(name = "Shortage", color = "#dc3220", #dataLabels = list(align = "center", enabled = TRUE), data = df1$Shortage) %>% hc_chart(type = "column") %>% hc_plotOptions(series = list(stacking = "normal")) u
Now, let's consider some parameters such as : - a target of minimum stock level - a target of maximum stock level
And then: - calculate the projected inventories and coverages - analyze those values vs those defined targets
First, let's add some parameters to our initial database.
Define min & max coverages, through 2 parameters: - Min.Cov - Max.Cov
Expressed in number of periods of coverages. The periods can be in monthly buckets, weekly buckets, etc...
my_data_with_parameters <- my_demand_and_suppply my_data_with_parameters$Min.Cov <- 2 my_data_with_parameters$Max.Cov <- 4 head(my_data_with_parameters)
Let's apply the proj_inv() function
df1 <- proj_inv(data = my_data_with_parameters, DFU = DFU, Period = Period, Demand = Demand, Opening = Opening, Supply = Supply, Min.Cov = Min.Cov, Max.Cov = Max.Cov) # see results calculated_projection_and_analysis <- df1 head(calculated_projection_and_analysis)
First, let's create a function status_PI.Index()
# create a function status.PI.Index status_PI.Index <- function(color = "#aaa", width = "0.55rem", height = width) { span(style = list( display = "inline-block", marginRight = "0.5rem", width = width, height = height, backgroundColor = color, borderRadius = "50%" )) }
And now let's create a reactable:
# set a working df df1 <- calculated_projection_and_analysis # remove not needed column df1 <- df1[ , -which(names(df1) %in% c("DFU"))] # create a f_colorpal field df1 <- df1 %>% mutate(f_colorpal = case_when( Calculated.Coverage.in.Periods > 6 ~ "#FFA500", Calculated.Coverage.in.Periods > 2 ~ "#32CD32", Calculated.Coverage.in.Periods > 0 ~ "#FFFF99", TRUE ~ "#FF0000" )) #------------------------- # Create Table reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE, striped = TRUE, highlight = TRUE, compact = TRUE, defaultPageSize = 20, columns = list( Demand = colDef( name = "Demand (units)", cell = data_bars(df1, #round_edges = TRUE #value <- format(value, big.mark = ","), #number_fmt = big.mark = ",", fill_color = "#3fc1c9", #fill_opacity = 0.8, text_position = "outside-end" ) ), Calculated.Coverage.in.Periods = colDef( name = "Coverage (Periods)", maxWidth = 90, cell= color_tiles(df1, color_ref = "f_colorpal") ), f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages `Projected.Inventories.Qty`= colDef( name = "Projected Inventories (units)", format = colFormat(separators = TRUE, digits=0), style = function(value) { if (value > 0) { color <- "#008000" } else if (value < 0) { color <- "#e00000" } else { color <- "#777" } list(color = color #fontWeight = "bold" ) } ), Supply = colDef( name = "Supply (units)", cell = data_bars(df1, #round_edges = TRUE #value <- format(value, big.mark = ","), #number_fmt = big.mark = ",", fill_color = "#3CB371", #fill_opacity = 0.8, text_position = "outside-end" ) #format = colFormat(separators = TRUE, digits=0) #number_fmt = big.mark = "," ), PI.Index = colDef( name = "Analysis", cell = function(value) { color <- switch( value, TBC = "hsl(154, 3%, 50%)", OverStock = "hsl(214, 45%, 50%)", OK = "hsl(154, 64%, 50%)", Alert = "hsl(30, 97%, 70%)", Shortage = "hsl(3, 69%, 50%)" ) PI.Index <- status_PI.Index(color = color) tagList(PI.Index, value) }), `Safety.Stocks`= colDef( name = "Safety Stocks (units)", format = colFormat(separators = TRUE, digits=0) ), `Maximum.Stocks`= colDef( name = "Maximum Stocks (units)", format = colFormat(separators = TRUE, digits=0) ), `Opening`= colDef( name = "Opening Inventories (units)", format = colFormat(separators = TRUE, digits=0) ), `Min.Cov`= colDef(name = "Min Stocks Coverage (Periods)"), `Max.Cov`= colDef(name = "Maximum Stocks Coverage (Periods)"), # ratios `Ratio.PI.vs.min`= colDef(name = "Ratio PI vs min"), `Ratio.PI.vs.Max`= colDef(name = "Ratio PI vs Max") ), # close columns lits columnGroups = list( colGroup(name = "Projected Inventories", columns = c("Calculated.Coverage.in.Periods", "Projected.Inventories.Qty")), colGroup(name = "Stocks Levels Parameters", columns = c("Min.Cov", "Max.Cov", "Safety.Stocks", "Maximum.Stocks")), colGroup(name = "Analysis Features", columns = c("PI.Index", "Ratio.PI.vs.min", "Ratio.PI.vs.Max")) ) ) # close reactable
Compared to the previous table, we have here some additional information available: the calculated fields [Analysis Features] - based on safety & maximum stocks targets - useful for a mass analysis (Cockpit / Supply Risks Alarm), but perhaps too detailed for a focus on a SKU
We also can notice that the minimum and maximum stocks coverages, initially expressed in Periods (of coverage) are converted in units. It's quite useful to chart the projected inventories vs those 2 thresholds for example.
# set a working df df1 <- calculated_projection_and_analysis # Chart p <- highchart() %>% hc_add_series(name = "Max", color = "crimson", data = df1$Maximum.Stocks) %>% hc_add_series(name = "min", color = "lightblue", data = df1$Safety.Stocks) %>% hc_add_series(name = "Projected Inventories", color = "gold", data = df1$Projected.Inventories.Qty) %>% hc_title(text = "Projected Inventories") %>% hc_subtitle(text = "in units") %>% hc_xAxis(categories = df1$Period) %>% #hc_yAxis(title = list(text = "Sales (units)")) %>% hc_add_theme(hc_theme_google()) p
We can visualize the periods when we are in Alert & OverStock, comparing to the minimum and Maximum stocks levels.
Let's now add a few parameters to the initial database "my_demand_and_suppply"
df1 <- my_demand_and_suppply df1$SSCov <- 2 df1$DRPCovDur <- 3 df1$MOQ <- 1 df1$FH <- c("Frozen", "Frozen", "Frozen", "Frozen","Frozen","Frozen","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free","Free") # get Results my_drp_template <- df1 head(my_drp_template)
Apply drp()
# set a working df df1 <- my_drp_template # calculate drp demo_drp <- drp(data = df1, DFU = DFU, Period = Period, Demand = Demand, Opening = Opening, Supply = Supply, SSCov = SSCov, DRPCovDur = DRPCovDur, MOQ = MOQ, FH = FH ) glimpse(demo_drp)
# set a working df df1 <- demo_drp # keep only the needed columns df1 <- df1 %>% select(Period, Demand, DRP.Calculated.Coverage.in.Periods, DRP.Projected.Inventories.Qty, DRP.plan) # replace missing values by zero df1$DRP.plan[is.na(df1$DRP.plan)] <- 0 df1$DRP.Projected.Inventories.Qty[is.na(df1$DRP.Projected.Inventories.Qty)] <- 0 # create a f_colorpal field df1 <- df1 %>% mutate(f_colorpal = case_when( DRP.Calculated.Coverage.in.Periods > 8 ~ "#FFA500", DRP.Calculated.Coverage.in.Periods > 2 ~ "#32CD32", DRP.Calculated.Coverage.in.Periods > 0 ~ "#FFFF99", TRUE ~ "#FF0000" )) # create reactable reactable(df1, resizable = TRUE, showPageSizeOptions = TRUE, striped = TRUE, highlight = TRUE, compact = TRUE, defaultPageSize = 20, columns = list( Demand = colDef( name = "Demand (units)", cell = data_bars(df1, fill_color = "#3fc1c9", text_position = "outside-end" ) ), DRP.Calculated.Coverage.in.Periods = colDef( name = "Coverage (Periods)", maxWidth = 90, cell= color_tiles(df1, color_ref = "f_colorpal") ), f_colorpal = colDef(show = FALSE), # hidden, just used for the coverages `DRP.Projected.Inventories.Qty`= colDef( name = "Projected Inventories (units)", format = colFormat(separators = TRUE, digits=0), style = function(value) { if (value > 0) { color <- "#008000" } else if (value < 0) { color <- "#e00000" } else { color <- "#777" } list(color = color #fontWeight = "bold" ) } ), DRP.plan = colDef( name = "Replenishment (units)", cell = data_bars(df1, fill_color = "#3CB371", text_position = "outside-end" ) ) ), # close columns lits columnGroups = list( colGroup(name = "Projected Inventories", columns = c("DRP.Calculated.Coverage.in.Periods", "DRP.Projected.Inventories.Qty")) ) ) # close reactable
# set a working df df1 <- demo_drp # Chart p <- highchart() %>% hc_add_series(name = "Max", color = "crimson", data = df1$Maximum.Stocks) %>% hc_add_series(name = "min", color = "lightblue", data = df1$Safety.Stocks) %>% hc_add_series(name = "Projected Inventories", color = "gold", data = df1$DRP.Projected.Inventories.Qty) %>% hc_title(text = "(DRP) Projected Inventories") %>% hc_subtitle(text = "in units") %>% hc_xAxis(categories = df1$Period) %>% #hc_yAxis(title = list(text = "Sales (units)")) %>% hc_add_theme(hc_theme_google()) p
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.