Description Usage Arguments Value
This function is internal to the function 'fit.gpcm' and performs the item regressions. It is a core function of the pseudo-likelihood algorithm for items of the GPCM. The function calls function 'itemGPCM.data' to create the data for input into 'mlogit', which is use to fit a conditional multinomial model for each item. The up-dated scale values are put into the Master data frame and the 'item.log' array. It generally would not run outside of 'fit.gpcm' or 'ple.lma'.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | item.gpcm(
Master,
item.log,
Phi.mat,
fitem,
TraitByTrait,
PersonByItem,
npersons,
nitems,
ncat,
nless,
ntraits,
Maxnphi,
pq.mat,
starting.sv,
LambdaName
)
|
Master |
Master data frame |
item.log |
History over iterations of items' log likelihood and estimates of lambda, and item parameters |
Phi.mat |
Starting value of matrix of association parameters (optional) |
fitem |
Formula for item regressions |
TraitByTrait |
Trait adjacency matrix (same as inTraitAdj) |
PersonByItem |
Same as inData |
npersons |
Number of persons |
nitems |
Number of items |
ncat |
Number of categories per item |
nless |
Number of unique lambdas and unique nus per item |
ntraits |
Number of latent traits |
Maxnphi |
Number of phi parameters to bet estimated (NULL for 1 dimensional) |
pq.mat |
Used to compute rest-scores and totals |
starting.sv |
Fixed category scores |
LambdaName |
Lambda names for formula for items item regressions |
Master Master data frame with up-dated category scores for items
item.log Up-dated history array over iterations of the algorithm of items' log likelihood and estimated lambda and alpha parameters
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.