View source: R/plot_moderators.R
plot_moderator_d_density | R Documentation |
Plot the Conditional Average Treatment Effect split by a discrete moderating variable. This plot will provide a visual test of moderation by discrete variables.
plot_moderator_d_density( .model, moderator, .alpha = 0.7, facet = FALSE, .ncol = 1 )
.model |
a model produced by 'bartCause::bartc()' |
moderator |
the moderator as a vector |
.alpha |
transparency value [0, 1] |
facet |
TRUE/FALSE. Create panel plots of each moderator level? |
.ncol |
number of columns to use when faceting |
ggplot object
George Perrett
data(lalonde) confounders <- c('age', 'educ', 'black', 'hisp', 'married', 'nodegr') model_results <- bartCause::bartc( response = lalonde[['re78']], treatment = lalonde[['treat']], confounders = as.matrix(lalonde[, confounders]), estimand = 'ate', commonSuprule = 'none' ) plot_moderator_d_density(model_results, lalonde$educ)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.