Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
x <- 1:4 if(requireNamespace("depmixS4")){ model <- depmixS4::depmix(x ~ 1, nstates=2, ntimes=length(x)) depmixS4::fit(model) }
data("buggy.5states", package="plotHMM") plot(buggy.5states$logratio) if(requireNamespace("depmixS4")){ model.spec <- depmixS4::depmix( logratio ~ 1, data=buggy.5states, nstates=5) set.seed(1) model.fit <- depmixS4::fit(model.spec) }
if( require(data.table) && requireNamespace("neuroblastoma") && require(ggplot2) && requireNamespace("depmixS4") ){ data(neuroblastoma, package="neuroblastoma") nb.dt <- data.table(neuroblastoma$profiles) one.pro <- nb.dt[profile.id=="4" & chromosome%in%1:10] ntimes <- rle(as.integer(one.pro$chromosome)) n.states <- 4 model.spec <- depmixS4::depmix( logratio ~ 1, data=one.pro, nstates=n.states, ntimes=ntimes$lengths) set.seed(1) unconstrained.fit <- depmixS4::fit(model.spec) param.names <- c(mean="(Intercept)", sd="sd") par.vec <- depmixS4::getpars(unconstrained.fit) matrix( par.vec[names(par.vec) %in% param.names], ncol=length(param.names), byrow=TRUE, dimnames=list(state=1:n.states, parameter=names(param.names))) one.pro[, viterbi := factor(unconstrained.fit@posterior[,1]) ] ggplot()+ geom_point(aes( position/1e6, logratio, color=viterbi), data=one.pro)+ facet_grid(. ~ chromosome, scales="free", space="free") }
if(requireNamespace("depmixS4")){ par.vec <- depmixS4::getpars(model.spec) equal.groups <- rep(1, length(par.vec)) equal.groups[names(par.vec)=="sd"] <- 2 if(FALSE){ constrained.fit <- depmixS4::fit(model.spec, equal=equal.groups) } }
if(requireNamespace("depmixS4")){ one.chrom <- nb.dt[profile.id=="4" & chromosome=="2"] n.states <- 3 model.spec <- depmixS4::depmix( logratio ~ 1, data=one.chrom, nstates=n.states) log.emission.mat <- log(model.spec@dens[,1,]) log.transition.mat <- log(model.spec@trDens[1,,]) log.init.vec <- log(model.spec@init[1,]) microbenchmark::microbenchmark(depmixS4={ result <- depmixS4::forwardbackward(model.spec) }, plotHMM={ fwd.list <- plotHMM::forward_interface( log.emission.mat, log.transition.mat, log.init.vec) back.mat <- plotHMM::backward_interface( log.emission.mat, log.transition.mat) mult.mat <- plotHMM::multiply_interface( fwd.list$log_alpha, back.mat) pairwise.array <- plotHMM::pairwise_interface( log.emission.mat, log.transition.mat, fwd.list$log_alpha, back.mat) }, times=5) }
plotHMM is 2-3x slower than depmixS4. Possibly due to (1) overhead of several function calls rather than just one, and (2) log space computations are slower than scaling.
if(requireNamespace("depmixS4")){ microbenchmark::microbenchmark(depmixS4={ depmixS4::viterbi(model.spec) }, plotHMM={ plotHMM::viterbi_interface( log.emission.mat, log.transition.mat, log.init.vec) }, times=5) }
plotHMM is about 100x faster than depmixS4, because of the overhead of loops in R (memory allocation in each iteration).
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.